- 解三角形的实际应用
- 共67题
1
题型:填空题
|
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
1
题型:填空题
|
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
1
题型:填空题
|
将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记
正确答案
解析
考查函数中的建模应用,等价转化思想。一题多解。
设剪成的小正三角形的边长为
(方法一)利用导数求函数最小值。


当



故当

(方法二)利用函数的方法求最小值。
令
故当

知识点
解三角形的实际应用利用基本不等式求最值
1
题型:简答题
|
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=

(1)该小组已经测得一组



(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使



正确答案
(1)124m.
(2)
解析
(1)


AD—AB=DB,故得

因此,算出的电视塔的高度H是124m。
(2)由题设知



故当

因为




故所求的

知识点
两角和与差的正切函数解三角形的实际应用利用基本不等式求最值
1
题型:
单选题
|
已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有( )。
正确答案
C
解析
若B为直角,则
即a2+a3(a3-b)=0,
又a≠0,故
若A为直角,则
若O为直角,则不可能,故b-a3=0或b-a3-
知识点
解三角形的实际应用
下一知识点 : 三角函数的最值
扫码查看完整答案与解析









