- 直线的方向向量
- 共206题
已知:={2,-3,1},
={2,0,-2},
={-1,-2,0},
=2
-3
+
, 则
的坐标为______.
正确答案
∵=(2,-3,1),
=(2,0,-2),
=(-1,-2,0)
∴=2
- 3
+
=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)
=(4,-6,2)-(6,0,-6)+(-1,-2,0)
=(-3,-8,8)
故答案为:(-3,-8,8)
(本小题满分14分)
一个几何体是由圆柱和三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
,
,
,
.
(1)求证:;
(2)求二面角的平面角的大小.
正确答案
(本小题主要考查空间线线、线面关系,二面角,三视图等知识,考查化归与转化数学思想方法,以及空间想象能力、推理论证能力、运算求解能力.)
方法1:(1)证明:因为,
,所以
,即
.
又因为,
,所以
平面
.
因为,所以
.………………………………………………………………4分
(2)解:因为点、
、
在圆
的圆周上,且
,所以
为圆
的直径.
设圆的半径为
,圆柱高为
,根据正(主)视图、侧(左)视图的面积可得,
…………………………………………6分
解得
所以,
.………………………………………………………………………7分
过点作
于点
,连接
,
由(1)知,,
,所以
平面
.
因为平面
,所以
.
所以为二面角
的平面角.…………………………………………………………9分
由(1)知,平面
,
平面
,
所以,即△
为直角三角形.
在△
中,
,
,则
.
由,解得
.
因为.…………………………………………………………………………13分
所以.
所以二面角的平面角大小为
.………………………………………………………14分
方法2:(1)证明:因为点、
、
在圆
的圆周上,且
,所以
为圆
的直径.
设圆的半径为
,圆柱高为
,根据正(主)视图、侧(左)视图的面积可得,
…………………………………………2分
解得
所以,
.………………………………………………………………………3分
以点为原点,
、
所在的射线分别为
轴、
轴建立如图的空间直角坐标系
,则
,
,
,
,
,
,
.
………………………5分
因为,
所以.
所以.…………………………………………………9分
(2)解:设是平面
的法向量,因为
,
所以即
取,则
是平面
的一个法向量.……………………………………………11分
由(1)知,,又
,
,所以
平面
.
所以是平面
的一个法向量.……………………………………………………12分
因为,
所以.
而等于二面角
的平面角,
所以二面角的平面角大小为
.………………………………………………………14分
方法3:(1)证明:因为,
,所以
,即
.
又因为,
,所以
平面
.
因为,
所以.…………………………………………………………………………………………4分
(2)解:因为点、
、
在圆
的圆周上,且
,所以
为圆
的直径.
设圆的半径为
,圆柱高为
,根据正(主)视图、侧(左)视图的面积可得,
…………………………………………6分
解得
所以,
.………………………………………………………………………7分
以点为原点,
、
所在的射线分别为
轴、
轴建立如图的空间直角坐标系
,则
,
,
,
,
,
,
.
…………………………9分
设是平面
的法向量,
则即
取,则
是平面
的一个法向量.………11分
由(1)知,,又
,
,
所以平面
.
所以是平面
的一个法向量.……………………………………………………12分
因为,
所以.
而等于二面角
的平面角,
所以二面角的平面角大小为
.………………………………………………………14分
略
如图,四棱锥的底面
是正方形,
平面
,
为
上的点,且
.
(1)证明:;
(2)若,求二面角
的余弦值.
正确答案
(1)详见解析;(2)二面角的余弦值为
.
试题分析:(1)要证,先证
平面
,则要证明
垂直于平面
内的两条相交直线,先由正方形的对角线互相垂直得到
,再由
平面
,得到
,结合直线与平面垂直的判定定理得到
平面
,从而得到
;(2)以
为原点,
、
、
所在的直线为
、
、
轴建立空间直角坐标系,利用空间向量法求二面角
的余弦值.
试题解析:(1)∵平面
,∴
,
∵底面是正方形,∴
,∴
平面
,
∵平面
,∴
.
(2)以为原点,
、
、
所在的直线为
、
、
轴建立空间直角坐标系.
设,则
,
,因为
,
易知,
,
,
,
,
所以,
,
,
设平面的法向量为
,则
,
,
即,令
,得
,同理可取平面
的法向量
,
所以,所以二面角
的余弦值为
.
已知A(1,-1,2),B(5,-6,2),C(1,3,-1),则在
上的投影为______.
正确答案
∵A(1,-1,2),B(5,-6,2),C(1,3,-1),
∴=(4,-5,0),
=(0,4,-3),
∴在
上的投影=|
|cos<
,
>
=×
=-4.
故答案为:-4.
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.
正确答案
(1)见解析(2)
(1)连接AC交BD于点O,连接OE;在△CPA中,E,O分别是边CP,CA的中点,∴OE∥PA,而OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.
(2)如图建立空间直角坐标系,设PD=DC=2.
则A(2,0,0),P(0,0,2),E(0,1,1),
B(2,2,0),=(0,1,1),
=(2,2,0).,
设n=(x,y,z)是平面BDE的一个法向量,则由得
取y=-1,得n=(1,-1,1),又=(2,0,0)是平面DEC的一个法向量.
∴cos〈n,〉=
=
.
故结合图形知二面角B-DE-C的余弦值为
扫码查看完整答案与解析