热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.

(1)求证:平面

(2)求二面角的余弦值.   

正确答案

(1)根据线面垂直的性质定理来证明线线垂直。

(2)

试题分析:解析:(1)在图1中, 可得, 从而

.

中点连结, 则, 又面

, 从而平面.

,又.

平面.

(2)建立空间直角坐标系如图所示,

.

为面的法向量,则, 解得. 令, 可得.

为面的一个法向量,∴.

∴二面角的余弦值为.

(法二)如图,取的中点的中点,连结.

易知,又,又.

的中位线,因,且都在面内,故,故即为二面角的平面角.

中,易知

中,易知.

.

.

∴二面角的余弦值为.

点评:主要是考查了运用向量法来空间中的角以及垂直的证明,属于基础题。

1
题型:简答题
|
简答题

如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。

(1)  证明:直线EE//平面FCC

求二面角B-FC-C的余弦值。

正确答案

(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1

连接A1D,C1F1,CF1,因为AB="4," CD=2,且AB//CD,

所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D,

又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,

所以CF1//EE1,又因为平面FCC平面FCC

所以直线EE//平面FCC.

(2)因为AB="4," BC="CD=2," 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵,

在Rt△OPF中,,,所以二面角B-FC-C的余弦值为.

解法二:(1)因为AB="4," BC="CD=2," F是棱AB的中点,

所以BF=BC=CF,△BCF为正三角形, 因为ABCD为

等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,

连接DM,则DM⊥AB,所以DM⊥CD,

以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,

,则D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),

C1(0,2,2),E(,,0),E1,-1,1),所以,,设平面CC1F的法向量为所以,则,所以,所以直线EE//平面FCC.

(2),设平面BFC1的法向量为,则所以,取,则,

,

所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为

1
题型:简答题
|
简答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;

(Ⅱ)若,,求二面角的正切值.

正确答案

(1)对于线面垂直的证明,一般要通过线线垂直来分析证明,关键是对于

(2)3

试题分析:解析:(Ⅰ)因为平面,平面,所以.又因为平面,平面,所以.而,平面,平面,所以平面.                                 

5分 

(Ⅱ)由(Ⅰ)可知平面,而平面,所以,而为矩形,所以为正方形,于是.

法1:以点为原点,轴、轴、轴,建立空间直角坐标系.则,于是,.设平面的一个法向量为,则,从而,令,得.而平面的一个法向量为.所以二面角的余弦值为,于是二面角的正切值为3.                                      13分

法2:设交于点,连接.因为平面,平面,平面,所以,,于是就是二面角的平面角.又因为平面,平面,所以是直角三角形.由可得,而,所以,,而,所以,于是,而,于是二面角的正切值为.

点评:主要是考查了空间几何体中线面垂直的证明,以及二面角的平面角的求解,属于中档题。

1
题型:简答题
|
简答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;

(2)若SD⊥平面PAC,求二面角PACD的大小;

(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

正确答案

(1)证明详见解析;(2)30°;(3)存在  SE∶EC=2∶1

试题分析:(1)设AC交BD于O,以 分别为S,D,C,

x轴、y轴、z轴的正方向,建立空间直角坐标系,则S,D,C,

求出的坐标,并计算得到·=0,从而AC⊥SD.(2)为平面PAC的一个法向量,

为平面DAC的一个法向量,向量的夹角等于二面角PACD的平面角,根据向量的夹角公式计算出的夹角即可.(3)假设存在一点E使BE∥平面PAC,设=t(0≤t≤1),则=+=+t,因为·=0,可建立关于t的等式,解之即可.

试题解析:(1)证明:连接BD,设AC交BD于O,

由题意知SO⊥平面ABCD,以O为坐标原点,分别为

x轴、y轴、z轴的正方向,建立空间直角坐标系.

设底面边长为a,,则高SO=a.于是S,D,C,

=,=,·=0,故OC⊥SD,从而AC⊥SD.  4分

(2)解:由题设知,平面PAC的一个法向量为=,

平面DAC的一个法向量为=,则cos<,>==,

故所求二面角的大小为30°. 8分

(3)解:在棱SC上存在一点E使BE∥平面PAC.,由(2)知是平面PAC的一个法向量,

=,=,        设=t(0≤t≤1),

=+=+t=,而·=0t=,

即当SE∶EC=2∶1时,BE∥平面PAC.          12分

1
题型:简答题
|
简答题

如图所示,正方体ABCD-A1B1C1D1,M为AA1的中点,N为A1B1上的点,且满足A1N=NB1,P为底面正方形A1B1C1D1的中心.求证:MN⊥MC,MP⊥B1C.

正确答案

证明略

 设=a,=b,=c

则a、b、c两两垂直且模相等.

∴a·b=b·c=a·c=0,

又∵=NB1

==b,

=+=a+b,

=++=-a+b+c,

·=(a+b)·(b+c-a)

=- =0.

∴MN⊥MC,

=+ =+(b+c)=(a+b+c),

=+=-a+c.

·=(a+b+c)(c-a)=0.∴MP⊥B1C.

下一知识点 : 共线向量与共面向量
百度题库 > 高考 > 数学 > 直线的方向向量

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题