- 一元二次不等式及其解法
- 共4411题
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).若方程f(x)+6a=0有两个相等的根,则实数a=______.
正确答案
∵二次函数f(x)的二次项系数为a,不等式f(x)>-2x的解集为(1,3),
∴f(x)+2x>0即a(x-1)(x-3)>0,且a<0
由此可得:f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a
∴方程f(x)+6a=0即ax2-(2+4a)x+9a=0,此方程有两个相等的实数根
可得:△=(2+4a)2-4×a×9a=0,解之得a=-(a=1舍去)
故答案为:-
已知函数f(x)=则满足不等式f(1-x2)> f(2x)的x的取值范围是( )。
正确答案
(-1,-1)
已知f(x)=,则不等式f(x)+2>0解集是______.
正确答案
当x≥0时,f(x)+2=-x2+x+2>0⇒-1<x<2,故0≤x<2;
当x<0时,f(x)+2=-x2-x+2>0⇒-2<x<1,-2<x<0.
综上得:-2<x<2.
故不等式f(x)+2>0解集是:(-2,2).
故答案为:(-2,2).
已知函数f(x)=x2+(a-1)x+b,f(1)=1.
(1)若函数f(x)没有零点,求a的取值范围;
(2)若函数f(x)的图象的对称轴是x=1,解不等式f(x)>1.
正确答案
(1)由f(1)=1得1+a-1+b=1,得a+b=1,
因为函数f(x)没有零点,所以x2+(a-1)x+b=0中△<0,即(a-1)2-4b<0,
又b=1-a,所以(a-1)2-4(1-a)<0,化为a2+2a-3<0,解得-3<a<1;
(2)函数f(x)的图象的对称轴是x=1,即-=1,又b=1-a,联立解得a=-1,b=2.
∴x2-2x+2>1,化为(x-1)2>0,解得x≠1,所以f(x)>1的解集为{x|x≠1}.
已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.
正确答案
(1)∵当a=5时,不等式f(x)<0即
x2+5x+6<0,
∴(x+2)(x+3)<0,
∴-3<x<-2.
∴不等式f(x)<0的解集为{x|-3<x<-2}
(2)不等式f(x)>0的解集为R,
∴x的一元二次不等式x2+ax+6>0的解集为R,
∴△=a2-4×6<0⇒-2<a<2
∴实数a的取值范围是(-2,2
)
已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(1)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<|x1-x2|≤2,试确定c-b的符号.
正确答案
(1)由已知|f(1)|=|f(-1)|,有|a+b+c|=|a-b+c|,(a+b+c)2=(a-b+c)2,可得4b(a+c)=0.
∵bc≠0,∴b≠0.∴a+c=0.
又由a>0有c<0.
∵|c|=1,于是c=-1,则a=1,|b|=1.
∴f(x)=x2±x-1.
(2)g(x)=2ax+b,由g(1)=0有2a+b=0,b<0.
设方程f(x)=0的两根为x1、x2.
∴x1+x2=-=2,x1x2=
.
则|x1-x2|==
.
由已知0<|x1-x2|≤2,
∴0≤<1.
又∵a>0,bc≠0,
∴c>0.
∴c-b>0.
已知函数f(x)=(ax2+x)ex,其中e是自然对数的底数,a∈R.
(1)当a>0时,解不等式f(x)≤0;
(2)当a=0时,求整数t的所有值,使方程f(x)=x+2在[t,t+1]上有解;
(3)若f(x)在[-1,1]上是单调增函数,求a的取值范围.
正确答案
(1)因为ex>0,所以不等式f(x)≤0即为ax2+x≤0,
又因为a>0,所以不等式可化为x(x+)≤0,所以不等式f(x)≤0的解集为[-
,0].
(2)当a=0时,方程即为xex=x+2,由于ex>0,所以x=0不是方程的解,所以原方程等价于ex--1=0,
令h(x)=ex--1,因为h′(x)=ex+
>0对于x≠0恒成立,
所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,
又h(1)=e-3<0,h(2)=e2-2>0,h(-3)=e-3-<0,h(-2)=e-2>0,
所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,所以整数t的所有值为{-3,1}.
(3)f′(x)=[ax2+(2a+1)x+1]ex,
①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立,当且仅当x=-1时取等号,故a=0符合要求;
②当a≠0时,令g(x)=ax2+(2a+1)x+1,
因为△=(2a+1)2-4a=4a2+1>0,所以g(x)=0有两个不相等的实数根x1,x2,
不妨设x1>x2,因此f(x)有极大值又有极小值.
若a>0,因为g(-1)g(0)=-a<0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.
若a<0,可知x1>0>x2,
因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,
因为g(0)=1>0,所以必须满足,即
,所以-
≤a≤0.
综上可知,a的取值范围是[-,0].
已知函数f(x)=(x2-3x+3)ex.
(Ⅰ)如果f(x)定义在区间[-2,t](t>-2)上,那么
①当t>1时,求函数y=f(x)的单调区间;
②设m=f(-2),n=f(t).试证明:m<n;
(Ⅱ)设g(x)=f(x)+(x-2)ex,当x>1时,试判断方程g(x)=x根的个数.
正确答案
(I)f′(x)=(2x-3)ex+(x2-3x+3)ex=x(x-1)ex.
①当t>1时,
当x∈(-2,0)时,f′(x)>0,函数f(x)单调递增;
当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;
当x∈(1,t)时,f′(x)>0,f(x)单调递增.
综上可知:当x∈(-2,0),(1,t)时,函数f(x)单调递增;当x∈(0,1)时,函数f(x)单调递减.
②设h(t)=n-m=(t2-3t+3)et-13e-2,h′(t)=t(t-1)et(t>2),列表如下:
由表格可知h(t)的极小值为h(1)=e-=
>0,而h(-2)>0,
∴当t>-2时,h(t)>h(-2),即n>m.
(II)g(x)=(x2-3x+3)ex+(x-2)ex=(x-1)2ex,
问题转化为:判定方程(x-1)2ex=x当x>1时,根的个数.
设u(x)=(x-1)2ex-x(x>1),则u′(x)=(x2-1)ex-1,
设v(x)=(x2-1)ex-1(x>1),则v′(x)=(x2+2x-1)ex,
当x>1时,v′(x)>0,v(x)在(1,+∞)上单调递增,而v(1)=-1<0,v(2)=3e2-1>0,
因此在(1,2)上存在唯一x0,使得v(x0)=0,即存在唯一x0∈(1,2)使得u′(x0)=0,
列表如下:
可知:u(x)min=u(x0)<u(1)=-1<0,由u(2)=e2-2>0,y=u(x)的图象如图所示,因此y=u(x)在(1,+∞)只有一个零点,即g(x)=x(x>1)只有一个零点.
已知函数f(x)=x2-1,g(x)=m|x-1|(m∈R).
(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数m的取值范围;
(2)若当x∈R时,关于x的不等式f(x)≥g(x)恒成立,求实数m的取值范围;
(3)求函数h(x)=|f(x)|+g(x)在区间[0,2]上的最大值(直接写出结果,不需给出演算步骤).
正确答案
已知二次函数f(x)=ax2+(b-8)x-a-ab,且不等式f(x)>0的解集为x∈(-3,2);
(1)求a,b;(2)试问:c为何值时,不等式ax2+bx+c≤0的解集为R.
正确答案
(1)∵不等式f(x)>0的解集为x∈(-3,2),∴-3,2是方程ax2+(b-8)x-a-ab=0的两根,
∴,且a<0,可得
.
(2)由a<0,知二次函数y=ax2+bx+c的图象开口向下,要使不等式-3x2+5x+c≤0的解集为R,只需△≤0,
即 25+12c≤0,故 c≤-.
∴当c≤- 时,不等式ax2+bx+c≤0的解集为R.
扫码查看完整答案与解析