- 坐标系的作用
- 共23题
11.在极坐标系中,直线与圆
交于A,B两点,则
=_______________.
正确答案
2
知识点
21.选做题:在A、B、C、D四小题中只能选做2题。解答应写出文字说明、证明过程或演算步骤。
B.(选修4-2:矩阵与变换)
二阶矩阵M有特征值λ=8,其对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成点(-2,4),求矩阵
。
C.(选修4-4:坐标系与参数方程)
已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标系为,直线
的参数方程为
(t为参数,
),试在曲线C上一点M,使它到直线
的距离最大。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
请考生在以下三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.
【选修4—1】几何证明选讲(请回答28、29、30题)
如图:已知PA切圆O于A,PBC是割线,弦CD∥AP,AD交BC于E,F在CE上,且。
【选修4—4】坐标系与参数方程(请回答31、32题)
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为
。
【选修4—5】不等式选讲(请回答33、34题)
已知函数的最小值是
28.求证:∠EDF=∠P;
29.求证:
30.若,DE=6,EF=4.求PA的长。
31.写出曲线C1与直线l的直角坐标方程;
32.设Q为曲线C1上一动点,求Q点到直线l距离的最小值。
33.求a的值;
34.解不等式:
正确答案
证明:∵
∴
又∵∠DEF=∠CED
∴△DEF∽△CED
∴∠C=∠EDF 又CD∥AP,
∴∠C=∠P.
∴∠EDF=∠P.
解析
证明:∵
∴
又∵∠DEF=∠CED
∴△DEF∽△CED
∴∠C=∠EDF 又CD∥AP,
∴∠C=∠P.
∴∠EDF=∠P.
考查方向
解题思路
先证明△DEF∽△CED,再根据平行求出∠EDF=∠P.
易错点
切割线定理在应用的时候出错,线段成比例找不对容易出错,相似三角形不写成对应的容易导致比例线段出错。
正确答案
证明:
由(1)得∠EDF=∠P,又∠FED=∠PEA,
∴△FED∽△AEP. ∴.
∴又
∴
解析
证明:
由(1)得∠EDF=∠P,又∠FED=∠PEA,
∴△FED∽△AEP. ∴.
∴又
∴
考查方向
解题思路
借助第一问,求得△FED∽△AEP,进而得出成比例线段。
易错点
切割线定理在应用的时候出错,线段成比例找不对容易出错,相似三角形不写成对应的容易导致比例线段出错。
正确答案
解析
证明:
设CE=3k,EB=2k.
∵,∴
.
又CE=3k=9, k=3,EB=2k=6.
由(2)得,
故.
∵
∴.
考查方向
解题思路
借助第一二问,根据成比例线段得出结果。
易错点
切割线定理在应用的时候出错,线段成比例找不对容易出错
正确答案
C1的直角坐标方程:;直线l的直角坐标方程
解析
根据,
可以得到
C1的直角坐标方程:;直线l的直角坐标方程
考查方向
解题思路
根据极坐标与直角坐标互化的公式可以直接得到曲线C1与直线l的直角坐标方程;
易错点
极坐标与直角坐标的转化
正确答案
解析
由可设曲线C1上的任意一动点Q
,
∴点Q到直线的距离
考查方向
解题思路
将曲线C1的直角坐标方程转化为参数方程,代入点Q到直线的距离公式,利用三角恒等变换得到最值。
易错点
点到直线距离公式的应用,计算出错。
正确答案
a=1
解析
可以先不考虑参数a,令
画出图形,即可知道函数的最小值是
因为函数的最小值是
所以a=1
【三级考点】不等式的基本性质,绝对值不等式的解法
考查方向
解题思路
利用零点分段法解绝对值不等式,讨论三种情况。
易错点
在对函数的最小值进行求解时,参数的处理容易出错
正确答案
解析
把a=1代入
利用零点分段法可以得到此不等式的解集是
考查方向
解题思路
利用零点分段法解绝对值不等式,讨论三种情况。
易错点
解决第二问的时候,要注意不等式的最小值。
扫码查看完整答案与解析