热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是______.

正确答案

根据抛物线的定义可知M到焦点的距离为1,则其到准线距离也为1.

又∵抛物线的准线为y=-

∴M点的纵坐标为1-=

故答案为:

1
题型:填空题
|
填空题

若点为抛物线上一点,则抛物线焦点坐标为       ;点到抛物线的准线的距离为       

正确答案

,

试题分析:将点代入抛物线方程可得。所以抛物线方程为,所以焦点坐标为,准线方程为。所以点到抛物线的准线的距离为

1
题型:简答题
|
简答题

(本题满分14分)已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.

正确答案

解:依题意可设抛物线方程为:(a可正可负),与直线y=2x+1截得的弦为AB;

则可设A(x1,y1)、B(x2,y2)联立   得

即:   (6分)

得:a=12或-4(6分)

所以抛物线方程为 (2分)

1
题型:填空题
|
填空题

抛物线的焦点为       

正确答案

1
题型:简答题
|
简答题

本题10分)如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16 m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.

(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?

(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞. 试问:一艘顶部宽m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?

正确答案

(1)如图所示,以过拱桥的最高点且平行水面的直线为X轴,最高点O为原点建立直角坐标系          ------------------------------------------- 1分

设抛物线方程为,将点代入得=8, 抛物线方程是,-------------------------------------------4分

代入得,故船在水面以上部分高不能超过7米。------------------------------------------- 6分

(2)将代入方程,------------------------------------------- 8分

此时,故船身应至少降低米-------------------------------------10分

1
题型:简答题
|
简答题

(本小题满分12分)

已知抛物线上有一点到焦点的距离为5,

(1)求的值。

(2)过焦点的直线交抛物线于A,B两点,若,求直线的方程。

正确答案

1)由题意知

(2)由题意知直线斜率存在,设为,直线代入,设 

所求直线方程为

1
题型:简答题
|
简答题

直线的右支交于不同的两点A、B.

(1)求实数k的取值范围;

(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由

正确答案

解:(1)将直线

……①

依题意,直线l与双曲线C的右支交于不同两点,故

(2)设A、B两点的坐标分别为,则由①式得……②

假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0).

则由FA⊥FB得:

整理得……③

把②式及代入③式化简得解得,可知使时满足题设

1
题型:填空题
|
填空题

在抛物线上,横坐标为4的点到焦点的距离为5,则的值为       .

正确答案

2

略       

1
题型:填空题
|
填空题

F是抛物线y2=4x的焦点,P是抛物线上任一点,A(3,1)是定点,则|PF|+|PA|的最小值是        

正确答案

4

1
题型:填空题
|
填空题

若点为抛物线,则点到直线距离的最小值为             

正确答案

下一知识点 : 直线与圆锥曲线
百度题库 > 高考 > 数学 > 抛物线

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题