热门试卷

X 查看更多试卷
1 简答题 · 12 分

如图,动点与两定点构成,且直线的斜率之积为4,设动点的轨迹为

(1)求轨迹的方程;

(2)设直线轴交于点,与轨迹相交于点,且,求的取值范围。

1 简答题 · 10 分

已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点。

(1)求M的轨迹的参数方程;

(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点。

1 简答题 · 12 分

在平面直角坐标系中,已知动点,点与点关于直线对称,且.直线是过点的任意一条直线。

(1)求动点所在曲线的轨迹方程;

(2)设直线与曲线交于两点,且,求直线的方程;

(3)设直线与曲线交于两点,求以的长为直径且经过坐标原点的圆的方程。

1 简答题 · 16 分

如图,已知平面内一动点到两个定点的距离之和为,线段的长为

(1)求动点的轨迹的方程;

(2)过点作直线与轨迹交于两点,且点在线段的上方,

线段的垂直平分线为

①求的面积的最大值;

②轨迹上是否存在除外的两点关于直线对称,请说明理由。

1 简答题 · 14 分

已知.

(1)当时,求曲线在点处的切线方程;

(2)若处有极值,求的单调递增区间;

(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

下一知识点 : 用其它方法求轨迹方程
百度题库 > 高考 > 文科数学 > 直接法求轨迹方程
  • 上一题
  • 1/5
  • 下一题