- 用坐标表示向量的数量积
- 共636题
已知椭圆E的长轴的一个端点是抛物线
(I)求椭圆E的方程;
(II)过点C(﹣1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使恒为常数?若存在,求出点M的坐标;若不存在,请说明理由.
正确答案
解:(I)由题意,椭圆的焦点在x轴上,且a=,c=e
a=
×
=
,
故b==
=
,
所以,椭圆E的方程为+
=1,即x2+3y2=5.
(II)假设存在点M符合题意,设AB:y=k(x+1),
代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;
设A(x1,y1),B(x2,y2),M(m,0),则
x1+x2=﹣,x1x2=
;
∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣
﹣
,
要使上式与k无关,则有6m+14=0,解得m=﹣;
所以,存在点M(﹣,0)满足题意.
已知以原点O为中心,F(,0)为右焦点的双曲线C的离心率
。
(1)求双曲线C的标准方程及其渐近线方程;
(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与双曲线的两条渐近线分别交于G,H两点,求的值。
正确答案
解:(1)设C的标准方程为(a,b>0),
则由题意,
又
因此a=2,
C的标准方程为
C的渐近线方程为
即x-2y=0和x+2y=0。
(2)如图,由题意点E(xE,yE)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,
因此有x1xE+4y1yE=4,x2xE+4y2yE=4,
故点M,N均在直线xEx+4yEy=4上,
因此直线MN的方程为xEx+4yEy=4
设G,H分别是直线MN与渐近线x-2y=0及x+2y=0的交点,
由方程组及
解得,
故
因为点E在双曲线上,有
所以。
已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W,
(Ⅰ)求W的方程;
(Ⅱ)若A,B是W上的不同两点,O是坐标原点,求的最小值。
正确答案
解:(Ⅰ)由|PM|-|PN|=知动点P的轨迹是以M,N为焦点的双曲线的右支,
实半轴长,
又半焦距c=2,故虚半轴长,
所以W的方程为。
(Ⅱ)设A,B的坐标分别为(),
,
当AB⊥x轴时,,
从而;
当AB与x轴不垂直时,设直线AB的方程为,
与W的方程联立,消去y得,
故,
所以=
==
=,
又因为,
所以,从而
,
综上,当AB⊥x轴时,取得最小值2。
双曲线的一条渐近线方程是
,坐标原点到直线AB的距离为
,其中A(a,0),B(0,﹣b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N,求时,直线MN的方程.
正确答案
解:(1)∵A(a,0),B(0,﹣b),
∴设直线AB:
∴,∴
,
∴双曲线方程为:.
(2)∵双曲线方程为:,
∴,设P(x0,y0),
∴,
,
∴=
=3.
B(0,﹣3)B1(0,3),
设M(x1,y1),N(x2,y2)
∴设直线l:y=kx﹣3,
∴,
∴3x2﹣(kx﹣3)2=9.(3﹣k2)x2+6kx﹣18=0,
∴
k2=5,即代入(1)有解,
∴.
A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴垂直,若,则双曲线C的离心率e=( )。
正确答案
扫码查看完整答案与解析