热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

21. 已知函数a为实常数).

(I)若的单调区间;

(II)若,求函数上的最小值及相应的x值;

(III)设b=0,若存在,使得成立,求实数a的取值范围.

正确答案

解:(Ⅰ) 时,

定义域为

上,,当时,

时,

所以,函数的单调增区间为;单调减区间为

(Ⅱ)因为,所以

(i) 若上非负(仅当时,),

故函数上是增函数,

此时

(ii)若,

时,,

时,,此时是减函数;

时,,此时是增函数.

(Ⅲ)

不等式,即

可化为

因为, 所以且等号不能同时取,

所以,即,因而

),又

时,

从而(仅当时取等号),所以上为增函数,

的最小值为,所以实数的取值范围是

解析

将f(x)求导并整理,得到f(x)在区间上单调递减,然后分类讨论a的不同取值对单调区间的影响。利用函数单调性证明不等式恒成立的条件。解题步骤见答案。

考查方向

本题主要考查函数的单调性、奇偶性,导数的应用,参数的分类讨论等,常和不等式方程相结合考查,属于难题。

解题思路

利用导数求单调区间,利用函数与不等式关系求最大值最小值

易错点

不会利用导数求函数单调区间

知识点

函数的单调性及单调区间函数的最值及其几何意义导数的运算
1
题型: 单选题
|
单选题 · 5 分

12.关于函数,下列说法错误的是

A的极小值点

B函数有且只有1个零点

C存在正实数,使得恒成立

D对任意两个正实数,且,若,则

正确答案

C

解析

且当时,,函数递减,

时,,函数递增,

因此的极小值点,A正确;

所以当时,恒成立,即单调递减,

所以有零点且只有一个零点,B正确;

易知当时,

对任意的正实数

显然当时,,即

所以不成立,C错误;

作为选择题这时可得结论,选C,

下面对D研究,因为

,变形为

,代入上式解得,所以,由导数的知识可证明是增函数,

(洛必达法则),

所以,即 命题的判断

考查方向

函数的性质,知识点多,难度大。

解题思路

根据函数的性质,依次判断每个选项

易错点

对命题理解不透彻,对函数的性质掌握不好

知识点

命题的真假判断与应用导数的运算
1
题型:简答题
|
简答题 · 12 分

21.已知函数(其中是自然对数的底数),导函数.

(Ⅰ)若时,都有解,求的取值范围;

(Ⅱ)若,试证明:对任意恒成立.

正确答案

见解析

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求;(2)要注意对参数的讨论.

(Ⅰ)由,令

,所以上单调递减,又当趋向于时,

趋向于正无穷大,故,即

(Ⅱ)由,得,令

所以

因此,对任意等价于

,得

因此,当时,单调递增;时,单调递减,所以的最大值为,故

,所以时,

单调递增,

时,,即

所以

因此,对任意恒成立

考查方向

本题考查了利用导数求参数的取值范围,分类讨论,讨论点大体可以分成以下几类:1、根据判别式讨论;2、根据二次函数的根的大小;3、定义域由限制时,根据定义域的隐含条件;4、求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;5、多次求导求解等.

解题思路

本题考查导数的性质,解题步骤如下:

1、求导,然后解导数不等式。

2、对参数分类讨论证得结论。

易错点

第二问中的易丢对x的分类讨论。

知识点

导数的运算不等式恒成立问题不等式的证明
1
题型:简答题
|
简答题 · 14 分

21.己知函数f(x)=a(x-)-2lnx,其中a∈R.

(1)若f(x)有极值,求a的取值范围;

(2)讨论(x)的零点个数,并说明理由.(参考数值:ln2≈0. 6931)

正确答案

(1)0<a<1;

(2)当a≤0或a≥1时,有唯一零点;当0<a<1时,有三个零点.

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求;(2)要注意对参数的讨论.

(1),因为f(x)定义域为(0,+∞),

所以ax2-2x+a=0有正根且不为等根。显然a≠0,由x1x2=1>0.得Δ>0且x1+x2>0,

所以  0<a<1 。

(2)由上知,,因为x∈(0,+∞),

①若a≤0,则<0恒成立,所以f(x)在(0,+∞)单调递减,

因为f(1)=0,所以f(x)的零点唯一;

②若a≥1,则≥0恒成立,所以f(x)在(0,+∞)单调递增,

因为f(1)=0,所以f(x)的零点唯一;

③若0<a<1,记x1,x2分别为ax2-2x+a=0的两根,且x1<1<x2,且f(x)在(0,x1)单调递增,在(x1,x2)单调递增,(x2,+∞)单调递增。

因为f(1)=0,所以f(x1)>0,f(x2)<0.

当x∈(0,x1)时,取

显然,>0,所以h(a)在(0,1)单调递增,所以

f(x)在有一个零点;

因为

则f(x)在有一个零点;

综上可知:当a≤0或a≥1时,有唯一零点;

当0<a<1时,有三个零点.

考查方向

本题考查了利用导数求含参数的函数极值,分类讨论,讨论点大体可以分成以下几类:

(1)根据判别式讨论;

(2)根据二次函数的根的大小;

(3)定义域由限制时,根据定义域的隐含条件;

(4)求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;

(5)多次求导求解等.

解题思路

本题考查导数的性质,解题步骤如下:

(1)求导,然后解导数不等式,算极值。

(2)对参数分类讨论求得零点个数。

易错点

第二问中的易丢对a的分类讨论。

知识点

函数零点的判断和求解导数的运算
1
题型: 单选题
|
单选题 · 5 分

12. 已知函数上处处可导,若,则(   ).

A 一定小于

B 一定大于

C 可能大于

D可能等于

正确答案

A

解析

构造函数 则                                                                              

因为  所以,即上递增,

所以,于是,

故选A。

考查方向

本题主要考查构造函数比较两个数大小的方法,导数与函数的单调性等知识,是一道综合性较强的问题。

解题思路

(1)根据题意构造函数。

(2)确定函数的单调性。

(3)利用单调性比较大小。

易错点

(1)不能根据题意构造函数。

(2)求函数导数时,出现错误。

知识点

函数单调性的判断与证明函数单调性的性质导数的运算
下一知识点 : 导数的加法与减法法则
百度题库 > 高考 > 理科数学 > 导数的运算

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题