- 导数的运算
- 共219题
21. 已知函数(a为实常数).
(I)若的单调区间;
(II)若,求函数
在
上的最小值及相应的x值;
(III)设b=0,若存在,使得
成立,求实数a的取值范围.
正确答案
解:(Ⅰ) 时,
,
定义域为,
在上,
,当
时,
当时,
所以,函数的单调增区间为
;单调减区间为
(Ⅱ)因为,所以
,
,
(i) 若,
在
上非负(仅当
时,
),
故函数在
上是增函数,
此时
(ii)若,
,
当时,
,
当时,
,此时
是减函数;
当时,
,此时
是增函数.
故
(Ⅲ) ,
不等式,即
可化为.
因为, 所以
且等号不能同时取,
所以,即
,因而
(
)
令(
),又
,
当时,
,
,
从而(仅当
时取等号),所以
在
上为增函数,
故的最小值为
,所以实数
的取值范围是
解析
将f(x)求导并整理,得到f(x)在区间上单调递减,然后分类讨论a的不同取值对单调区间的影响。利用函数单调性证明不等式恒成立的条件。解题步骤见答案。
考查方向
本题主要考查函数的单调性、奇偶性,导数的应用,参数的分类讨论等,常和不等式方程相结合考查,属于难题。
解题思路
利用导数求单调区间,利用函数与不等式关系求最大值最小值
易错点
不会利用导数求函数单调区间
知识点
12.关于函数,下列说法错误的是
正确答案
解析
,
,
且当时,
,函数递减,
当时,
,函数递增,
因此是
的极小值点,A正确;
,
,
所以当时,
恒成立,即
单调递减,
又,
,
所以有零点且只有一个零点,B正确;
设,
易知当时,
,
对任意的正实数,
显然当时,
,即
,
,
所以不成立,C错误;
作为选择题这时可得结论,选C,
下面对D研究,因为,
即,变形为
,
设,
,代入上式解得
,所以
,由导数的知识可证明
是增函数,
又(洛必达法则),
所以,即
命题的判断
考查方向
函数的性质,知识点多,难度大。
解题思路
根据函数的性质,依次判断每个选项
易错点
对命题理解不透彻,对函数的性质掌握不好
知识点
21.已知函数(其中
,
是自然对数的底数),
为
导函数.
(Ⅰ)若时,
都有解,求
的取值范围;
(Ⅱ)若,试证明:对任意
,
恒成立.
正确答案
见解析
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求;(2)要注意对参数的讨论.
(Ⅰ)由得
,令
,
,
,所以
在
上单调递减,又当
趋向于
时,
趋向于正无穷大,故
,即
.
(Ⅱ)由,得
,令
,
所以,
,
因此,对任意,
等价于
,
由,
,得
,
,
因此,当时,
,
单调递增;
时,
,
单调递减,所以
的最大值为
,故
,
设,
,所以
时,
,
单调递增,
,
故时,
,即
,
所以.
因此,对任意,
恒成立
考查方向
本题考查了利用导数求参数的取值范围,分类讨论,讨论点大体可以分成以下几类:1、根据判别式讨论;2、根据二次函数的根的大小;3、定义域由限制时,根据定义域的隐含条件;4、求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;5、多次求导求解等.
解题思路
本题考查导数的性质,解题步骤如下:
1、求导,然后解导数不等式。
2、对参数分类讨论证得结论。
易错点
第二问中的易丢对x的分类讨论。
知识点
21.己知函数f(x)=a(x-)-2lnx,其中a∈R.
(1)若f(x)有极值,求a的取值范围;
(2)讨论(x)的零点个数,并说明理由.(参考数值:ln2≈0. 6931)
正确答案
(1)0<a<1;
(2)当a≤0或a≥1时,有唯一零点;当0<a<1时,
有三个零点.
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求;(2)要注意对参数的讨论.
(1),因为f(x)定义域为(0,+∞),
所以ax2-2x+a=0有正根且不为等根。显然a≠0,由x1x2=1>0.得Δ>0且x1+x2>0,
所以 0<a<1 。
(2)由上知,,因为x∈(0,+∞),
①若a≤0,则<0恒成立,所以f(x)在(0,+∞)单调递减,
因为f(1)=0,所以f(x)的零点唯一;
②若a≥1,则≥0恒成立,所以f(x)在(0,+∞)单调递增,
因为f(1)=0,所以f(x)的零点唯一;
③若0<a<1,记x1,x2分别为ax2-2x+a=0的两根,且x1<1<x2,且f(x)在(0,x1)单调递增,在(x1,x2)单调递增,(x2,+∞)单调递增。
因为f(1)=0,所以f(x1)>0,f(x2)<0.
当x∈(0,x1)时,取
令
显然,>0,所以h(a)在(0,1)单调递增,所以
,
故f(x)在
有一个零点;
因为,
则f(x)在有一个零点;
综上可知:当a≤0或a≥1时,有唯一零点;
当0<a<1时,有三个零点.
考查方向
本题考查了利用导数求含参数的函数极值,分类讨论,讨论点大体可以分成以下几类:
(1)根据判别式讨论;
(2)根据二次函数的根的大小;
(3)定义域由限制时,根据定义域的隐含条件;
(4)求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;
(5)多次求导求解等.
解题思路
本题考查导数的性质,解题步骤如下:
(1)求导,然后解导数不等式,算极值。
(2)对参数分类讨论求得零点个数。
易错点
第二问中的易丢对a的分类讨论。
知识点
12. 已知函数在
上处处可导,若
,则( ).
正确答案
解析
构造函数 则
因为 所以
,即
在
上递增,
所以,于是,
故选A。
考查方向
本题主要考查构造函数比较两个数大小的方法,导数与函数的单调性等知识,是一道综合性较强的问题。
解题思路
(1)根据题意构造函数。
(2)确定函数的单调性。
(3)利用单调性比较大小。
易错点
(1)不能根据题意构造函数。
(2)求函数导数时,出现错误。
知识点
扫码查看完整答案与解析