热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 5 分

10.已知双曲线 的一条渐近线过点 ,且双曲线的一个焦点在抛物线 的准线上,则双曲线的方程为___________

正确答案

解析

代入渐近线方程,得a=2b. c=,c2=a2+b2, a2+.

考查方向

本题主要考查了双曲线的方程及双曲线与抛物线的基本知识。

解题思路

本题考查运用双曲线的渐近线方程及抛物线的准线方程,求a,b,解题步骤如下:将代入渐近线方程,得a=2b. 由双曲线的一个焦点在抛物线 的准线上,可知c=,c2=a2+b2, a2+.

易错点

本题必须注意审题,忽视则会出现错误。

知识点

双曲线的定义及标准方程双曲线的几何性质抛物线的标准方程和几何性质
1
题型:简答题
|
简答题 · 10 分

24.若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(2,2).

(1)求抛物线C的方程;

(2)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为

变化且满足时,证明直线AB恒过定点,并求出该定点坐标.

正确答案

见解析

解析

(1)

(2)

定点(6,-4)

考查方向

本题主要考查了抛物线与直线方程的综合能力运用。

解题思路

1利用已知条件把求出抛物线方程2.设出直线方程证明其过定点。

易错点

本题必须注意审题,否则求解错误。

知识点

抛物线的标准方程和几何性质圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 13 分

已知抛物线C的焦点F也是椭圆C;的一个焦点,C与C的公共弦的长为2,过点F的直线与C相交于A,B两点,与C相交于C,D两点,且同向。

24.求C的方程

25.若|AC|=||求直线的斜率。

第(1)小题正确答案及相关解析

正确答案

解析

:知其焦点F的坐标为(0,1),因为F也是椭圆的一焦点,

所以 1又的公共弦的长为2都关于y轴对称,且的方程为,由此易知的公共点的坐标为(),所以 2,联立1,2得=9,=8,故的方程为  3;

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

解题思路

根据已知条件可求得的焦点坐标为,再利用公共弦长为即可求解;

易错点

不会转化题中给出的条件的公共弦的长为2

第(2)小题正确答案及相关解析

正确答案

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

易错点

1.第(2)问联立方程运算出错;

1
题型:简答题
|
简答题 · 13 分

已知抛物线C的焦点F也是椭圆C;的一个焦点,C与C的公共弦的长为2,过点F的直线与C相交于A,B两点,与C相交于C,D两点,且同向。

24.求C的方程

25.若|AC|=||求直线的斜率。

第(1)小题正确答案及相关解析

正确答案

解析

:知其焦点F的坐标为(0,1),因为F也是椭圆的一焦点,

所以 1又的公共弦的长为2都关于y轴对称,且的方程为,由此易知的公共点的坐标为(),所以 2,联立1,2得=9,=8,故的方程为  3;

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

解题思路

根据已知条件可求得的焦点坐标为,再利用公共弦长为即可求解;

易错点

不会转化题中给出的条件的公共弦的长为2

第(2)小题正确答案及相关解析

正确答案

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

易错点

1.第(2)问联立方程运算出错;

1
题型:填空题
|
填空题 · 5 分

6.在平面直角坐标系中,已知抛物线的顶点在坐标原点,焦点在轴上,若曲线经过点,则其焦点到准线的距离为________.

正确答案

解析

设所求抛物线方程为y2=2px,

依题意9=2p

∴p=

又因为其焦点到准线的距离为p

故答案为:

考查方向

本题主要考查了抛物线的定义,在近几年的各省高考题出现的频率较高,常与抛物线的方程等知识点交汇命题,体现了学生的基础知识掌握能力。

解题思路

理解题意,代入点P求出抛物线的方程,有方程去解决性质问题。

易错点

1、抛物线的方程和图像记忆出错 。

2、不能准确理解焦点到准线的距离,从而不知如何求解。

知识点

抛物线的标准方程和几何性质
下一知识点 : 抛物线焦点弦的性质
百度题库 > 高考 > 理科数学 > 抛物线的标准方程和几何性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题