- 自由组合定律的应用
- 共5666题
番茄紫茎(A)对绿茎(a)是显性,缺刻叶(B)对马铃薯叶(b)是显性,这两对性状独立遗传:
(1)用两个番茄亲本杂交,F1性状比例如此表.这两个亲本的基因型分别是______和______.
(2)用表现型为绿茎、马铃薯叶的番茄产生的花药进行离体培养,若得到两种表现型的单倍体,原因可能是______.
(3)基因型为AaBb的番茄自交,在形成配子时,等位基因A与a的分开时期是______,F1中能稳定遗传的个体占______,F1中基因型为AABb的几率是______.
(4)在番茄地里发现一株异常番茄,具有较高的观赏价值,采用______方法可获得大量稳定遗传的幼苗.
(5)若用14CO2饲喂番茄叶片,光照一段时间后,放射性14C最先出现在______化合物.
正确答案
解:(1)两对等位基因控制两对相对性状的遗传符合自由组合规律.就紫茎和绿茎这一对性状来看,表中给出的数据:紫茎:绿茎=1:1,说明这两个亲本的基因型一个是Aa,另一个是aa;就缺刻叶和马铃薯叶这一对性状看,表中给出的数据:缺刻叶:马铃薯叶=3:1,说明两个亲本的基因都是杂合子(Bb),所以两个亲本的基因型分别是AaBb和aaBb.
(2)用表现型为绿茎、马铃薯叶的番茄产生的花药进行离体培养,理论上只能得到基因型为ab的单倍体,若得到两种表现型的单倍体,原因可能是发生了基因突变.
(3)等位基因分离的时期是减数分裂第一次分裂的后期.基因型为AaBb的番茄自交,根据自由组合定律,后代有9种基因型,其中能稳定遗传的占=
,基因型为AABb的几率是
=
.
(4)在番茄地里发现具有较高观赏价值的一株异常番茄,其原因最可能是基因突变,可采用组织培养的方法,获得大量稳定遗传的幼苗.
(5)番茄是C3植物,若用放射性同位素标记14CO2,根据暗反应物质变化的过程CO2被C5固定形成C3,故14C最先出现在三碳化合物中.
故答案为:
(l)AaBb aaBb
(2)发生了基因突变
(3)减数第次分裂后期
(4)植物组织培养(茎尖培养)
(5)三碳
解析
解:(1)两对等位基因控制两对相对性状的遗传符合自由组合规律.就紫茎和绿茎这一对性状来看,表中给出的数据:紫茎:绿茎=1:1,说明这两个亲本的基因型一个是Aa,另一个是aa;就缺刻叶和马铃薯叶这一对性状看,表中给出的数据:缺刻叶:马铃薯叶=3:1,说明两个亲本的基因都是杂合子(Bb),所以两个亲本的基因型分别是AaBb和aaBb.
(2)用表现型为绿茎、马铃薯叶的番茄产生的花药进行离体培养,理论上只能得到基因型为ab的单倍体,若得到两种表现型的单倍体,原因可能是发生了基因突变.
(3)等位基因分离的时期是减数分裂第一次分裂的后期.基因型为AaBb的番茄自交,根据自由组合定律,后代有9种基因型,其中能稳定遗传的占=
,基因型为AABb的几率是
=
.
(4)在番茄地里发现具有较高观赏价值的一株异常番茄,其原因最可能是基因突变,可采用组织培养的方法,获得大量稳定遗传的幼苗.
(5)番茄是C3植物,若用放射性同位素标记14CO2,根据暗反应物质变化的过程CO2被C5固定形成C3,故14C最先出现在三碳化合物中.
故答案为:
(l)AaBb aaBb
(2)发生了基因突变
(3)减数第次分裂后期
(4)植物组织培养(茎尖培养)
(5)三碳
假说演绎、建立模型与类比推理等是现代科学研究中常用的一种科学方法.利用假说演绎法,孟德尔发现了两大遗传定律;利用建立模型法,沃森和克里克发现了DNA双螺旋结构;利用类比推理,萨顿提出基因位于染色体上的假说.据此分析回答下列问题:
(1)孟德尔以黄色圆粒纯种豌豆和绿色皱粒纯种豌豆做亲本,分别设计了纯合亲本的杂交、Fl的自交、Fl的测交三组实验,按照假说演绎法包括“分析现象作出假设一检验假设一得出结论”,最后得出了基因的自由组合定律.孟德尔在基因的自由组合定律中提出的解释实验现象的“假说”是______.
(2)沃森和克里克所构建的DNA双螺旋结构模型是______模型.在描述、解释和预测种群数量的变化,常常需要建立______模型.
(3)利用类比推理,萨顿提出基因位于染色体上的假说,提出该假说的理由是______.请你利用类比推理的方法,推断出基因与DNA长链的关系是______.
正确答案
解:(1)孟德尔在基因的自由组合定律中提出的解释实验现象的“假说”是F1形成配子时,每对遗传因子彼此分离,不同对的遗传因子自由组合,并且F1产生4种比例相等的配子.
(2)沃森和克里克所建立的DNA双螺旋结构模型是物理模型.在描述、解释和预测种群数量的变化,常常需要建立模型.
(3)通过观察减数分裂过程中染色体的行为,运用类比推理法,萨顿推断染色体与基因有明显的平行关系.同样可以推断基因是DNA上的片段,即不同的基因是DNA长链上不同的片段.
故答案为:
(1)F1形成配子时,每对遗传因子彼此分离,不同对的遗传因子自由组合;F1产生4种比例相等的配子
(2)物理 数学
(3)基因与染色体行为存在明显的平行关系 不同的基因也许是DNA长链上不同的片段
解析
解:(1)孟德尔在基因的自由组合定律中提出的解释实验现象的“假说”是F1形成配子时,每对遗传因子彼此分离,不同对的遗传因子自由组合,并且F1产生4种比例相等的配子.
(2)沃森和克里克所建立的DNA双螺旋结构模型是物理模型.在描述、解释和预测种群数量的变化,常常需要建立模型.
(3)通过观察减数分裂过程中染色体的行为,运用类比推理法,萨顿推断染色体与基因有明显的平行关系.同样可以推断基因是DNA上的片段,即不同的基因是DNA长链上不同的片段.
故答案为:
(1)F1形成配子时,每对遗传因子彼此分离,不同对的遗传因子自由组合;F1产生4种比例相等的配子
(2)物理 数学
(3)基因与染色体行为存在明显的平行关系 不同的基因也许是DNA长链上不同的片段
日本明蟹壳色有三种情况:灰白色、青色和花斑色.其生化反应原理如图所示.基因A控制合成酶1,基因B控制合成酶2,基因b控制合成酶3.基因a控制合成的蛋白质无酶1活性,基因a纯合后,物质甲(尿酸盐类)在体内过多积累,导致成体会有50%死亡.甲物质积累表现为灰白色壳,丙物质积累表现为青色壳,丁物质积累表现为花斑色壳.请回答:
(1)日本明蟹的壳色是由______对基因控制的.青色壳明蟹的基因型有______种.
(2)基因型组合为AaBb和AaBB两只青色壳明蟹交配,F1成体只有灰白色明蟹和青色明蟹,比例为______.若让F1的青蟹随机交配,则F2幼体中出现灰白色明蟹的概率是______,出现青色壳明蟹的概率______.
(3)基因型为AaBb的两只明蟹杂交,后代的成体表现型及比例为______.
(4)从上述实验可以看出,基因通过控制______来控制代射过程,进而控制生物体的性状.这是基因对性状的______(填“直接”或者“间接”)控制.基因控制蛋白质合成的过程叫做______.
正确答案
解:(1)由题意分析可知,丙物质积累表现为青色壳,所以青色壳必须是能产生乙和丙物质的,因此明蟹的青色壳是由2对基因控制(要同时具有A和B),其基因型为AABb、AABB、AaBB、AaBb四种.
(2)基因型组合为AaBb和AaBB两只青色壳明蟹交配,后代基因型是A_B_,aaB_
,又因为aa的物质甲(尿酸盐类)在体内过多积累,导致成体会有50%死亡,所以F1成体只有灰白色明蟹和青色明蟹,比例为1:6.其后代青色壳明蟹的基因型及比例是AABb:AABB:AaBB:AaBb=1:1:2:2,若让后代的青蟹随机交配,则子代幼体(没有死亡)中出现灰白色明蟹(aa--)的概率是
×
×
=
,出现青色壳明蟹(A-B-)的概率是(1-
)×(1-
×
)=
×
=
.
(3)由于aa使甲物质积累表现为灰白色壳,丙物质积累表现为青色壳,丁物质积累表现为花斑色壳,所以AaBb×AaBb杂交,则后代中成体的表现型及比例为青色:花斑色:灰白色=9:3:2(aa50%个体死亡).
(4)根据题意和图示分析可知:灰白色壳明蟹的出现说明基因与性状之间的关系是基因通过控制酶的合成控制代谢,从而间接控制生物性状的,基因控制蛋白质合成的过程叫基因的表达.
故答案为:
(1)两 4
(2)1:6
(3)青色、花斑色、灰白色=9:3:2
(4)酶的合成 间接 基因的表达
解析
解:(1)由题意分析可知,丙物质积累表现为青色壳,所以青色壳必须是能产生乙和丙物质的,因此明蟹的青色壳是由2对基因控制(要同时具有A和B),其基因型为AABb、AABB、AaBB、AaBb四种.
(2)基因型组合为AaBb和AaBB两只青色壳明蟹交配,后代基因型是A_B_,aaB_
,又因为aa的物质甲(尿酸盐类)在体内过多积累,导致成体会有50%死亡,所以F1成体只有灰白色明蟹和青色明蟹,比例为1:6.其后代青色壳明蟹的基因型及比例是AABb:AABB:AaBB:AaBb=1:1:2:2,若让后代的青蟹随机交配,则子代幼体(没有死亡)中出现灰白色明蟹(aa--)的概率是
×
×
=
,出现青色壳明蟹(A-B-)的概率是(1-
)×(1-
×
)=
×
=
.
(3)由于aa使甲物质积累表现为灰白色壳,丙物质积累表现为青色壳,丁物质积累表现为花斑色壳,所以AaBb×AaBb杂交,则后代中成体的表现型及比例为青色:花斑色:灰白色=9:3:2(aa50%个体死亡).
(4)根据题意和图示分析可知:灰白色壳明蟹的出现说明基因与性状之间的关系是基因通过控制酶的合成控制代谢,从而间接控制生物性状的,基因控制蛋白质合成的过程叫基因的表达.
故答案为:
(1)两 4
(2)1:6
(3)青色、花斑色、灰白色=9:3:2
(4)酶的合成 间接 基因的表达
人类对遗传的认知逐步深入:
(1)在孟德尔豌豆杂交实验中,纯合的黄色圆粒(YYRR)与绿色皱粒(yyrr)的豌豆杂交,若将F2中黄色皱粒豌豆自交,其子代中表现型为绿色皱粒的个体占______.进一步研究发现r基因的碱基序列比R基因多了800个碱基对,但r基因编码的蛋白质(无酶活性)比R基因编码的淀粉分支酶少了末端61个氨基酸,推测r基因转录的mRNA提前出现______.试从基因表达的角度,解释在孟德尔“一对相对性状的杂交实验”中,所观察的7种性状的F1中显性性状得以体现,隐性性状不体现的原因是______(说出两种情况).
(2)摩尔根用灰身长翅(BBVV)与黑身残翅(bbvv)的果蝇杂交,将F1中雌果蝇与黑身残翅雄果蝇进行测交,子代出现四种表现型,比例为2:2:48:48,说明F1中雌果蝇产生了______种配子.实验结果不符合自由组合定律,原因是这两对等位基因不满足该定律“______”这一基本条件.
(3)格里菲思用于转化实验的肺炎双球菌中,S型菌有SⅠ、SⅡ、SⅢ等多种类型,R型菌是由SⅡ型突变产生.利用加热杀死的SⅢ与R型菌混合培养,出现了S型菌,有人认为S型菌出现是由于R型菌突变产生,但该实验中出现的S型菌全为______,否定了这种说法.
(4)沃森和克里克构建了DNA双螺旋结构模型,该模型用______解释DNA分子的多样性,此外,______的高度精确性保证了DNA遗传信息的稳定传递.
正确答案
解:(1)YYRR×yyrr→基因型是Y_R_,自交子二代黄色皱粒的基因型是Y_rr,其中YYrr占,Yyrr占
,黄色皱粒豌豆自交,绿色皱粒的比例是yyrr=;终止密码子是翻译终止的信号,不能编码氨基酸,r编码的蛋白质比R编码的蛋白质少61个氨基酸,可能的原因是r基因转录的mRNA的终止密码子前移;
孟德尔“一对相对性状的杂交实验”中,F1中显性性状得以体现,隐性性状不体现,可能的原因是显性基因表达,隐性基因不转录;隐性基因进行了转录,但是隐性基因不翻译;隐性基因编码的蛋白质无活性、或活性低.
(2)灰身长翅(BBVV)与黑身残翅(bbvv)的果蝇杂交,子一代与隐性纯合子测交,出现了四种表现型,说明子一代杂合子产生四种配子,测交后代的比例是2:2:48:48,不符合1:1:1:1的比例,说明不遵循自由组合定律,原因是这两对基因位于一对同源染色体上,不满足该定律“非同源染色体上非等位基因”这一基本条件.
(3)加热杀死的SⅢ与R型菌混合培养,出现了S型菌,如果S型菌出现是由于R型菌突变产生,则应该含有SⅡ,如果S型菌只有SⅢ,则与“S型菌出现是由于R型菌突变产生”相矛盾.
(4)DNA分子多样性的原因是DNA分子中碱基对的排列顺序的多样性;DNA分子中碱基互补配对原则保证了保证了DNA遗传信息的稳定传递.
故答案为:
(1) 终止密码(子)
显性基因表达,隐性基因不转录,或隐性基因不翻译,或隐性基因编码的蛋白质无活性、或活性低
(2)4 非同源染色体上非等位基因
(3)SⅢ
(4)碱基对排列顺序的多样性 碱基互补配对
解析
解:(1)YYRR×yyrr→基因型是Y_R_,自交子二代黄色皱粒的基因型是Y_rr,其中YYrr占,Yyrr占
,黄色皱粒豌豆自交,绿色皱粒的比例是yyrr=;终止密码子是翻译终止的信号,不能编码氨基酸,r编码的蛋白质比R编码的蛋白质少61个氨基酸,可能的原因是r基因转录的mRNA的终止密码子前移;
孟德尔“一对相对性状的杂交实验”中,F1中显性性状得以体现,隐性性状不体现,可能的原因是显性基因表达,隐性基因不转录;隐性基因进行了转录,但是隐性基因不翻译;隐性基因编码的蛋白质无活性、或活性低.
(2)灰身长翅(BBVV)与黑身残翅(bbvv)的果蝇杂交,子一代与隐性纯合子测交,出现了四种表现型,说明子一代杂合子产生四种配子,测交后代的比例是2:2:48:48,不符合1:1:1:1的比例,说明不遵循自由组合定律,原因是这两对基因位于一对同源染色体上,不满足该定律“非同源染色体上非等位基因”这一基本条件.
(3)加热杀死的SⅢ与R型菌混合培养,出现了S型菌,如果S型菌出现是由于R型菌突变产生,则应该含有SⅡ,如果S型菌只有SⅢ,则与“S型菌出现是由于R型菌突变产生”相矛盾.
(4)DNA分子多样性的原因是DNA分子中碱基对的排列顺序的多样性;DNA分子中碱基互补配对原则保证了保证了DNA遗传信息的稳定传递.
故答案为:
(1) 终止密码(子)
显性基因表达,隐性基因不转录,或隐性基因不翻译,或隐性基因编码的蛋白质无活性、或活性低
(2)4 非同源染色体上非等位基因
(3)SⅢ
(4)碱基对排列顺序的多样性 碱基互补配对
茶树叶片的颜色与基因型之间的对应关系如下表.
请回答下列问题.
(1)已知决定茶树叶片颜色的两对等位基因独立遗传.黄绿叶茶树的基因型有______种.如让基因型GyYy植株自交后代中的黄绿叶植株自交,其中有______(比例)的植株后代将出现4种表现型.
(2)杂合黄叶植株与某植株杂交,子代出现的浓绿叶植株,则该植株的基因型为______,子代浓绿叶与子代杂合黄绿叶杂交后代的表现型及比例为:______.
(3)在黄绿叶茶树与黄叶茶树中,基因型为______的植株自交均可产生淡绿叶的子代,理论上选择基因型为______的植株自交获得淡绿叶子代的比例更高.
正确答案
解:(1)据题目表格信息,黄绿叶茶树的基因型有GGYY,GgYY,GgYy,GGYy,4种.GgYy个体自交,后代会出现G_Y_:G_yy:ggY_:ggyy=9:3:3:1,有4种表现型,所以如让基因型GyYy植株自交后代中的黄绿叶植株自交,其中有的植株后代将出现4种表现型.
(2)杂合黄叶植株ggYy与某植株杂交,子代出现=
的浓绿叶植株,说明两对基因由一对是测交,有一对是自交,则该植株的基因型为GgYy,子代浓绿叶的基因型为Ggyy,子代杂合黄绿叶基因型为GgYy、GgYY,后代G_Y_:G_yy:ggY_:ggyy=6:3:2:1,叶,即杂交后代的表现型及比例为黄绿叶:浓绿叶:黄叶:淡绿=6:3:2:1.
(3)黄绿叶茶树(G_Y_)基因型有GGYY,GgYY,GgYy,GGYy,4种,其中GgYy自交可以产生ggyy(淡绿)比例为×
=
;黄叶茶树(ggY_)有2种基因型:ggYY,ggYy;其中ggYy 自交可产生ggyy(淡绿)比例为
×
=
;因此,选择ggYy 自交获得淡绿叶子代的比例更高.
故答案为:
(1)4
(2)GgYy 黄绿叶:浓绿叶:黄叶:淡绿=6:3:2:1
(3)GgYy、ggYy ggYy
解析
解:(1)据题目表格信息,黄绿叶茶树的基因型有GGYY,GgYY,GgYy,GGYy,4种.GgYy个体自交,后代会出现G_Y_:G_yy:ggY_:ggyy=9:3:3:1,有4种表现型,所以如让基因型GyYy植株自交后代中的黄绿叶植株自交,其中有的植株后代将出现4种表现型.
(2)杂合黄叶植株ggYy与某植株杂交,子代出现=
的浓绿叶植株,说明两对基因由一对是测交,有一对是自交,则该植株的基因型为GgYy,子代浓绿叶的基因型为Ggyy,子代杂合黄绿叶基因型为GgYy、GgYY,后代G_Y_:G_yy:ggY_:ggyy=6:3:2:1,叶,即杂交后代的表现型及比例为黄绿叶:浓绿叶:黄叶:淡绿=6:3:2:1.
(3)黄绿叶茶树(G_Y_)基因型有GGYY,GgYY,GgYy,GGYy,4种,其中GgYy自交可以产生ggyy(淡绿)比例为×
=
;黄叶茶树(ggY_)有2种基因型:ggYY,ggYy;其中ggYy 自交可产生ggyy(淡绿)比例为
×
=
;因此,选择ggYy 自交获得淡绿叶子代的比例更高.
故答案为:
(1)4
(2)GgYy 黄绿叶:浓绿叶:黄叶:淡绿=6:3:2:1
(3)GgYy、ggYy ggYy
扫码查看完整答案与解析