- 直线与圆锥曲线的位置关系
- 共218题
22. 已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,
且|PF|、|MF|、|QF|成等差数列。
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求证:线段PQ的垂直平分线经过一个定点A;
(Ⅲ)在(Ⅱ)条件下,点A关于原点O的对称点是B,求|PB|的最小值及相应点P的坐标。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.如图,圆与
轴的正半轴交于点
,
是圆上的动点,
点在
轴上的投影是
,点
满足
(1)求动点的轨迹
的方程,并说明轨迹是什么图形;
(2)过点的直线
与
点的轨迹
交于不同的两点
、
,若
,求直线
的方程
正确答案
(1)设,则由题意得
轴且M是DP的中点,
所以
又P在圆上,
所以,
即,
即
轨迹是以与
为焦点,
长轴长为4的椭圆
(2)方法一:当直线的斜率不存在时,
,不满足题意。
设直线方程为
,
代入椭圆方程得:
△
设,
则 (*)
由知E是BF中点,
所以 (**)
由(*)、(**)
解得满足
,
所以
即所求直线方程为:
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,设点、
分别是椭圆
的左、右焦点,
为椭圆
上位于
轴上方的任意一点,且
的面积最大值为1.
(1)求椭圆的方程;
(2)设直线,若
、
均与椭圆
相切,证明:
;
(3)在(2)的条件下,试探究在轴上是否存在定点
,点
到
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.已知直线与抛物线
相交于
两点,
为
的焦点,若
,则
( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
22. 如图,和
是平面上的两点,动点
满足:
(1)求点的轨迹方程;
(2)若,且
为第一象限点,求点
的
坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.在平面直角坐标系中,已知椭圆C:
的左焦点为
,且椭圆C的离心率
.
(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于
的任一点,直线
分别交x轴于点S,T,证明:
为定值,并求出该定值;
(3)在椭圆C上,是否存在点,使得直线
与圆
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知圆经过椭圆
的右焦点
及上顶点
。
(1)求椭圆的方程;
(2)过椭圆外一点倾
斜角为
的直线
交椭圆于
、
两点,若点
在以线段
为直径的圆
的外部,求
的取值范围。
正确答案
(1)与
轴、
轴交点为
和
,
,
椭圆方程为:
(2)设直线的方程为:
(
)
可得:
可得:
即
设,
,
则,
化简得:
可得:,
取值范围为
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆的左、右焦点分别为
,椭圆上的点
满足
,且
的面积为
.
(1)求椭圆C的方程;
(2)设椭圆的左、右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,直线
与直线
的交点为
,证明:点
总在直线
上。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.给定椭圆,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点,且
分别交其“准圆”于点
.
①当为“准圆”与
轴正半轴的交点时,求
的方程;
②求证:为定值
正确答案
(1)
所以,椭圆方程:,
准圆方程:
(2)①易知且直线斜率存在,
设直线为
联立
因为椭圆与直线有且只有一个交点,
所以,因此
’
所以的方程为
②<ⅰ>当的斜率存在时,设点
,
设直线
由---(*)
同理,联立和椭圆方程可得:
---(**)
由(*)(**)可知,是方程
的两个根
,
因此是准圆的直径,所以
<ⅱ>当中有一条斜率不存在时,
,此时
所以
解析
解析已在路上飞奔,马上就到!
知识点
11.如图,抛物线和圆
,直线
经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则
的值为 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析