- 立体几何与空间向量
- 共2637题
已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点。
(1)求证:AF⊥平面PDC;
(2)求三棱锥B﹣PEC的体积;
(3)求证:AF∥平面PEC。
正确答案
见解析。
解析
(1)证明:∵PA⊥平面ABCD,∴PA⊥CD,
由底面ABCD是矩形,∴CD⊥DA,又PA∩AD=A,∴CD⊥平面PAD,
∴CD⊥AF。
∵PA=AD=1,F是PD的中点,
∴AF⊥PD,
又PD∩DC=D,∴AF⊥平面PDC。
(2)解:=
,
∵PA⊥平面ABCD,
VB﹣PEC=VP﹣BEC==
。
(3)
取PC得中点M,连接MF、ME。
∵,
,E是AB的中点,∴
,
∴四边形AEMF是平行四边形,
∴AF∥EM。
又AF⊄平面PEC,EM⊂平面PEC,
∴AF∥平面PEC。
知识点
如图,直三棱柱中,
,
(1)求直三棱柱的体积;
(2)若是
的中点,求异面直线
与
所成的角。
正确答案
(1)4(2)
解析
解析:(1)
(2)设是
的中点,连结
,
是异面直线
与
所成的角。
在中,
即
异面直线
与
所成的角为
。
知识点
如图,四面体中,
、
分别是
、
的中点,
平面
,
。
(1)求三棱锥的体积;
(2)求异面直线与
所成角的大小。
正确答案
(1)(2)
解析
解析:(1)因为CO=,AO=1 所以
。
(2)因为O、E为中点,所以OE//CD,所以的大小即为异面直线
AE与CD所成角。
在直角三角形AEO中,,所以异面直线AE与CD所成角的大小为
知识点
如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE。
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD;
(3)求三棱锥C-GBF的体积。
正确答案
见解析。
解析
知识点
如图,直三棱柱中,已知
,
,
,M、N分别是B1C1和AC的中点。
(1)求三棱锥的体积;
(2)求MN与底面ABC所成的角。
正确答案
答案: (1)8(2)
解析
(1)∵ =
……4
=
∴ ……7
(2)取中点
,连
.
∵ 分别是
的中点,
∴
∵三棱柱直三棱柱
∴
∴
∴
∴为MN与底面ABC所成的角 ……11
中,
∴
∴与底面ABC所成的角为
知识点
如图,在三棱锥中,
平面
,
,
为侧棱
上一点,它的正(主)视图和侧(左)视图如图所示。
(1)证明:平面
;
(2)求三棱锥的体积;
(3)在的平分线上确定一点
,使得
平面
,并求此时
的长。
正确答案
见解析。
解析
(1)因为平面
,所以
,
又,所以
平面
,所以
。
由三视图可得,在中,
,
为
中点,所以
,所以
平面
。
(2)由三视图可得,
由⑴知,
平面
,
又三棱锥的体积即为三棱锥
的体积,
所以,所求三棱锥的体积,
(3)取的中点
,连接
并延长至
,使得
,点
即为所求。
因为为
中点,所以
,
因为平面
,
平面
,所以
平面
,连接
,
,四边形
的对角线互相平分,所以
为平行四边形,所以
,又
平面
,所以在直角
中,
。
知识点
如图1,在直角梯形中,
,
,
.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1) 求证:平面
(2) 求几何体
的体积。
正确答案
见解析。
解析
解:(1)在图1中,可得,从而
,故
取中点
连结
,则
,又面
面
,
面面
,
面
,从而
平面
,
∴
又,
,
∴平面
另解:在图1中,可得,从而
,故
∵面ACD面
,面ACD
面
,
面
,从而
平面
(2) 由(1)可知为三棱锥
的高.
,
所以
由等积性可知几何体的体积为
知识点
已知四棱锥的底面
是直角梯形,
,
,侧面
为正三角形,
,
,如图4所示。
(1) 证明:平面
;
(2) 求三棱锥的体积
。
正确答案
见解析
解析
(1) 直角梯形
的
,
,又
,
,
∴。
∴在△和△
中,有
,
。
∴且
。
∴。
(2)∵,
是正三角形,
∴,结合几何体可知
,
∴。
知识点
在棱长为的正方体
中,
,
分别为棱
和
的中点。
(1)求异面直线与
所成的角;
(1)求三棱锥的体积;
正确答案
(1)(2)
解析
解析:(1)由题意得‖
,
(或其补角)就是所求的异面直线所成的角 2分
计算 4分
所以所求的异面直线的角大小
6分
(2)中,有
⊥面EGC
所以是三棱锥
的高, 9分
。 12分
知识点
如图,已知点在圆柱
的底面圆
上,
为圆
的直径,圆柱
的表面积为
,
,
。
(1)求三棱锥的体积;
(2)求异面直线与
所成角的大小,(结果用反三角函数值表示)。
正确答案
(1)(2)
解析
解析:(1)由题意,解得
. ………………2分
在△中,
,所以
。
在△中,
,所以
, ………………4分
所以, ………………6分
(2)取中点
,连接
,
,则
,
得或它的补角为异面直线
与
所成的角. ………………8分
又,
,得
,
,
由余弦定理得, ………………10分
所以异面直线 与
所成角的大小为
, ………………12分
知识点
如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C菱形,∠CBB1=60°,AB⊥B1C。
(1)求证:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1体积。
正确答案
见解析
解析
(1)由侧面AA1B1B为正方形,知AB⊥BB1。
又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,
又AB平面AA1B1B,所以平面AA1B1B⊥BB1C1C, …4分
(2)由题意,CB=CB1,设O是BB1的中点,连结CO,则CO⊥BB1。
由(1)知,CO⊥平面AB1B1A,且CO=BC=AB=,
连结AB1,则VC-ABB1=S△ABB1·CO=AB2·CO=, …8分
因VB1-ABC=VC-ABB1=VABC-A1B1C1=,
故三棱柱ABC-A1B1C1的体积VABC-A1B1C1=2. …12分
知识点
如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2, ,
.
(1)求证:平面平面
;
(2)求三棱锥D-PAC的体积;
正确答案
见解析。
解析
(1)证明:∵ABCD为矩形
∴且
∵ ∴
且
∴平面
,又∵
平面PAD
∴平面平面
(2) ∵
由(1)知平面
,且
∴
平面
分
∴
知识点
如图,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.
(1)求证:AD⊥PC;
(2)求三棱锥P-ADE的体积;
(3)在线段AC上是否存在一点M,使得PA//平面EDM,若存在,求出AM的长;若不存在,请说明理由.
正确答案
见解析。
解析
(1)证明:因为PD⊥平面ABCD.
所以PD⊥AD.
又因为ABCD是矩形,
所以AD⊥CD.…………………………………………………………………2分
因为
所以AD⊥平面PCD.
又因为平面PCD,
所以AD⊥PC.………………………………4分
(2)解:因为AD⊥平面PCD,VP-ADE=VA-PDE,…………………………………6分
所以AD是三棱锥A—PDE的高.
因为E为PC的中点,且PD=DC=4,
所以
又AD=2,
所以………………………………8分
(3)
取AC中点M,连结EM、DM,
因为E为PC的中点,M是AC的中点,
所以EM//PA,
又因为EM平面EDM,PA
平面EDM,
所以PA//平面EDM.…………………………………………………………10分
所以
即在AC边上存在一点M,使得PA//平面EDM,AM的长为.………12分
知识点
如图,四边形为矩形,
平面
,
,
平面
于点
,且点
在
上。
(1)求证:;
(2)求四棱锥的体积;
(3)设点在线段
上,且
,试在线段
上确定一点
,使得
平面
.
正确答案
见解析。
解析
(1)因为平面
,
∥
所以,
因为平面
于点
,
………………………………………2分
因为,所以
面
,
则
因为,所以
面
,
则…………………………………………………………………………4
分
(2)
作,因为面
平面
,所以
面
因为,
,所以
…………………………6分
…………………………………8分
(3)因为,
平面
于点
,所以
是
的中点
设是
的中点,连接
…………………………………………………10分
所以∥
∥
因为,所以
∥面
,则点
就是点
…………………12分
知识点
如图,矩形ABCD中,平面
,
,
为
上的点,且
,
.
(1)求证:平面平面
;
(2)求证:平面平面
;
(3)求三棱锥的体积。
正确答案
见解析。
解析
(1)证明:∵AD平面ABE,AD//BC
∴BC平面ABE,……………………………………………………2分
则AEBC.又∵BF
平面ACE,则AE
BF.
∴AE平面BCE.…………………………………………………4分
(2)证明:依题意可知:G是AC中点。
∵BF平面ACE,则CE
BF,而BC=BE.
∴F是AC中点.……………………………………………………………………………6分
在AEC中,FG//AE,∴AE//平面BFD.…………………………………………………8分
(3)解法一:∵AE//平面BFD,∴AE//FG,
而AE平面BCE.∴
FG
平面BCE,
∴FG平面BCF.
∵G是AC中点,∴F是CE中点。
∴FG//AE且FG=AE=1.
BF平面ACE,∴BF
CE.…………………………………………………………………10分
∴Rt中,BF=CF=
CE=
∴.
∴.……………………………………………………12分
解法二:.……………………12分
知识点
扫码查看完整答案与解析