- 立体几何与空间向量
- 共2637题
如图,直三棱柱中,
,
(1)求直三棱柱的体积;
(2)若是
的中点,求异面直线
与
所成的角。
正确答案
(1)4(2)
解析
解析:(1)
(2)设是
的中点,连结
,
是异面直线
与
所成的角。
在中,
即
异面直线
与
所成的角为
。
知识点
如图,四面体中,
、
分别是
、
的中点,
平面
,
。
(1)求三棱锥的体积;
(2)求异面直线与
所成角的大小。
正确答案
(1)(2)
解析
解析:(1)因为CO=,AO=1 所以
。
(2)因为O、E为中点,所以OE//CD,所以的大小即为异面直线
AE与CD所成角。
在直角三角形AEO中,,所以异面直线AE与CD所成角的大小为
知识点
如图,三棱柱中,侧棱垂直于底面,
,
,D是棱
的中点.
(1)求异面直线和
所成的角;
(2)证明:平面⊥平面
.
正确答案
见解析
解析
(1)由题设知AA1//BB1,
所以异面直线DC1和BB1所成的角为。
因为侧棱垂直底面,
。
又AC=BC=AA1,D是棱AA1的中点,
是等腰直角三角形。
。
所以,异面直线和
所成的角为
··············6分
(2)由题设知,
又
由题设知
,即
又,
平面
⊥平面
··············13分
知识点
在棱长为的正方体
中,
,
分别为棱
和
的中点。
(1)求异面直线与
所成的角;
(1)求三棱锥的体积;
正确答案
(1)(2)
解析
解析:(1)由题意得‖
,
(或其补角)就是所求的异面直线所成的角 2分
计算 4分
所以所求的异面直线的角大小
6分
(2)中,有
⊥面EGC
所以是三棱锥
的高, 9分
。 12分
知识点
如图,已知点在圆柱
的底面圆
上,
为圆
的直径,圆柱
的表面积为
,
,
。
(1)求三棱锥的体积;
(2)求异面直线与
所成角的大小,(结果用反三角函数值表示)。
正确答案
(1)(2)
解析
解析:(1)由题意,解得
. ………………2分
在△中,
,所以
。
在△中,
,所以
, ………………4分
所以, ………………6分
(2)取中点
,连接
,
,则
,
得或它的补角为异面直线
与
所成的角. ………………8分
又,
,得
,
,
由余弦定理得, ………………10分
所以异面直线 与
所成角的大小为
, ………………12分
知识点
如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点,求证:
(1)PA∥平面MDB;
(2)PD⊥BC。
正确答案
见解析。
解析
(1)
连接AC,交BD与点O,连接OM,
∵M为PC的中点,O为AC的中点,
∴MO∥PA,
∵MO⊂平面MDB,PA⊄平面MDB,
∴PA∥平面MDB。
(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,
∴BC⊥平面PCD,
∵PD⊂平面PCD,
∴BC⊥PD。
知识点
重庆市教委为配合教育部公布高考改革新方案,拟定在重庆彳中学进行调研,广泛征求高三年级学生的意见,重庆么中学高三年级共有700名学生,其中理科生500人,文科生200人,现采用分层抽样的方法从中抽取14名学生参加调研,则抽取的理科生的人数为
正确答案
解析
抽样比例为:,所以应应抽取的理科生人数为:
人,
故答案为:D
知识点
如图,四棱锥中,
是
的中点,
,
,
面
,且
.
(1)证明:;
(2)证明:面
.
正确答案
见解析。
解析
(1)由面
,
,所以
. …………3分
又 ,所以
. ……………………………………6分
(2)
取中点
,连结
,则
,且
,……………………8分
又 所以
是平行四边形, …………9分
,且
所以面
. ………………………………12分
知识点
一个简单多面体的直观图和三视图如图所示,它的正视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形。
(1)求证:PC⊥BD;
(2)试在线段PD上确定一点E,使得PB//面ACE;
(3)求这个简单多面体的表面积。
正确答案
见解析
解析
(1)连接BD,∵俯视图ABCD是正方形 ∴ BDAC
又PA 面ABCD ∴ PA
BD
PAAC=A ∴ BD
面PAC PC
面PAC ∴BD
PC (4分)
(2)存在点E是PD的中点使PB∥面ACE,连接BD交于点O,连接EO.
∵EO∥PB, EO面PEC
∴PB∥面PEC (8分)
(3)S△PAB= S△PAD=×1×1=
S四ABCD=1……11分
∵BC⊥BA BC⊥PA
∴BC⊥面PAB
∴BC⊥PB, S△PBC=×BC×PB=
×1×
=
……13分
同理S△PDC=×CD×PD=
×1×
=
∴S表= S△PAB+ S△PAD+ S四ABCD+S△PBC+S△PDC=+
+1+
+
=2+
……13分
知识点
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5. 点D是AB的中点,
(1)求证:AC⊥BC1;
(2)求证:AC 1//平面CDB1;
(3)求异面直线 AC1与 B1C所成角的余弦值。
正确答案
见解析。
解析
(1)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,
∴ AC⊥BC,
又因为 面ABC
又
面
面
AC⊥BC1;
(2)
设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,∴ DE//AC1,
∵ DE平面CDB1,AC1
平面CD
B1,∴ AC1//平面CDB1;
(3)∵ DE//AC1,∴ ∠CED为AC1与B1C所成的角,
在△CED中,ED=AC 1=
,CD=
AB=
,CE=
CB1=2
,
∴ ,
∴ 异面直线 AC1与 B1C所成角的余弦值.
知识点
6.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
如图,在直三棱柱中,
,三棱锥
的体积为
,求直线
与
所成角的大小(结果用反三角函数值表示).
正确答案
见解析
解析
,
是直线
与直线
所成的角
所以直线与
所成的角为
知识点
20.在直三棱柱中,
,
为
中点,
,
,异面直线
与
所成角大小为
。
(1)画出此三棱柱的左视图和俯视图;
(2)求三棱锥的体积。
正确答案
(1)左视图为正方形
俯视图为直角三角形
(2),
为异面直线
与
所成角
为
斜边
中点,
,由三角形全等可得:
,由
可得:
解析
解析已在路上飞奔,马上就到!
知识点
21.如图,在四棱锥中,底面
四边长为
的菱形,
,
,
,
为
的中点,
为
的中点
(1)证明:直线;
(2)求异面直线与
所成角的大小。
正确答案
方法一(综合法)
(1)取OB中点E,连接ME,NE
又
(2)
为异面直线
与
所成的角(或其补角)作
连接
,
所以 与
所成角的大小为
方法二(向量法)作于点P,
如图,分别以AB,AP,AO所在直线为轴建立坐标系,
,
(1)
设平面OCD的法向量为,
则
即
取,解得
(2)设与
所成的角为
,
,
与
所成角的大小为
解析
解析已在路上飞奔,马上就到!
知识点
7.如图,正四棱柱中,
,则异面直线
与
所成角为( )。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析