- 立体几何与空间向量
- 共2637题
如图,四棱锥P-ABCD中, BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求证:AC⊥PD;
(2)在线段PA上,是否存在点E,使BE∥平面PCD?若存在,求的值;若不存在,请说明理由。
正确答案
见解析
解析
(1)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD, AC⊥CD , AC⊂平面ABCD ,
∴AC⊥平面PCD, ...........................4分
∵PD⊂平面PCD ,
∴AC⊥PD. .................................6分
(2)线段PA上,存在点E,使BE∥平面PCD, ......7分
∵AD=3,
∴在△PAD中,存在EF//AD(E,F分别在AP,PD上),且使EF=1,
又∵ BC∥AD,∴BC∥EF,且BC=EF,
∴四边形BCFE是平行四边形, ...............................9分
∴BE//CF, ,
∴BE∥平面PCD, .......................................11分
∵EF =1,AD=3,
∴. .......................................13分
知识点
在四棱锥中,底面
为直角梯形,
//
,
,
,
,
为
的中点。
(1)求证:PA//平面BEF;
(2)求证:。
正确答案
见解析
解析
(1)证明:连接AC交BE于O,并连接EC,FO
//
,
,
为
中点
AE//BC,且AE=BC
四边形ABCE为平行四边形 ………1分
O为AC中点 ………………………………...2分
又 F为AD中点
//
…………......….4分
..……..……..5分
//
………………………………………..……..……..7分
(2)连接
……….…………….8分
………………..………..9分
………………………….…….....12 分
…………………………………………………………….14 分
知识点
已知:正方体,
,E为棱
的中点。
(1)求证:;
(2)求证:平面
;
(3)求三棱锥的体积。
正确答案
见解析。
解析
(1)
证明:连结,则
//
,
∵是正方形,∴
,∵
面
,∴
。
又,∴
面
。
∵面
,∴
,
∴。
(2)证明:
作的中点F,连结
。
∵是
的中点,∴
,
∴四边形是平行四边形,∴
,
∵是
的中点,∴
,
又,∴
。
∴四边形是平行四边形,
//
,
∵,
,
∴平面面
。
又平面
,∴
面
。
(3),
。
知识点
如图,已知平面
,
,
,
,
是
的中点.
(1)求与平面
所成的角的大小;
(2)求绕直线
旋转一周所构成的旋转体的体积.
正确答案
见解析
解析
(1)平面
,
,又
,
平面
,所以
就是
与平面
所成的角.…………………………………2分
在中,
,………………………………………4分
所以,…………………………………………………5分
即与平面
所成的角的大小为
.………………………6分
(2)绕直线
旋转一周所构成的旋转体,是以
为底面半径、
为高的圆锥中挖去一个以
为底面半径、
为高的小圆锥,体积。
.…………………………………12分.
知识点
如图,在四棱锥中,平面
平面
,且
,
,四边形
满足
,
,
。
为侧棱
的中点,
为侧棱
上的任意一点。
(1)若为
的中点,求证:
平面
;
(2)求证:平面平面
;
(3)是否存在点,使得直线
与平面
垂直?若存在,
写出证明过程并求出线段的长;若不存在,请说明理由。
正确答案
见解析
解析
(1)因为分别为侧棱
的中点,
所以 。
因为,所以
。
而平面
,
平面
,
所以平面
, ………………………………………4分
(2)因为平面平面
,
平面平面
,且
,
平面
.
所以平面
,又
平面
,所以
。
又因为,
,所以
平面
,
而平面
,
所以平面平面
,……………………………………………………8分
(3)存在点,使得直线
与平面
垂直。
在棱上显然存在点
,使得
.
由已知,,
,
,
。
由平面几何知识可得 。
由(2)知,平面
,所以
,
因为,所以
平面
。
而平面
,所以
。
又因为,所以
平面
.
在中,
,
可求得,。
可见直线与平面
能够垂直,此时线段
的长为
,……………14分
知识点
已知ABC是边长为3的等边三角形,点D、E分别是边AB、AC上的点,且满足==.将ADE沿DE折起到1ADE的位置,并使得平面A1DE⊥平面BCED.
(1)求证:A1D⊥EC;
(2)求三棱锥E-A1CD的高。
正确答案
见解析
解析
解析:(1)因为等边△的边长为3,且
,
所以,
. 在△
中,
,
由余弦定理得.
因为,
所以. ………………………3分
折叠后有
,
因为平面平面
, 又平面
平面
,
平面
,
,所以
平面
故A1D⊥EC.…………6分
(2)法一:由(2)的证明,可知,
平面
.
以为坐标原点,以
射线
、
、
分别为
轴、
轴、
轴的正半轴,建立空间直角坐标系
如图 , 作
于点
,连结
、
,设
, 则
,
,
,
所以,
,
,
所以
因为平面
, 所以平面
的一个法向量为
…8分
设直线
与平面
所成的角为
,
所以,
①若则
…
…9分
②若则
令
因为函数在
上单调递增,所以
即
所以
故所求的最大值为 (此时点P与C重合)…………12分
法二:如图,作于点
,连结
、
,
由(1)有平面
,而
平面
,
所以,又
, 所以
平面
所以是直线
与平面
所成的角 , ………………………8分
设
,则
,
,DH=BD-BH=2-
所以A1H=
所以在△
中,tan
=
①若x=0,则tan=
…………
…9分
②若则tan
=
令
因为函数在
上单调递增,所以
所以tan的最大值为
(此时点P与C重合)…………12分
知识点
如图,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.
(1)求证:AD⊥PC;
(2)求三棱锥P-ADE的体积;
(3)在线段AC上是否存在一点M,使得PA//平面EDM,若存在,求出AM的长;若不存在,请说明理由.
正确答案
见解析。
解析
(1)证明:因为PD⊥平面ABCD.
所以PD⊥AD.
又因为ABCD是矩形,
所以AD⊥CD.…………………………………………………………………2分
因为
所以AD⊥平面PCD.
又因为平面PCD,
所以AD⊥PC.………………………………4分
(2)解:因为AD⊥平面PCD,VP-ADE=VA-PDE,…………………………………6分
所以AD是三棱锥A—PDE的高.
因为E为PC的中点,且PD=DC=4,
所以
又AD=2,
所以………………………………8分
(3)
取AC中点M,连结EM、DM,
因为E为PC的中点,M是AC的中点,
所以EM//PA,
又因为EM平面EDM,PA
平面EDM,
所以PA//平面EDM.…………………………………………………………10分
所以
即在AC边上存在一点M,使得PA//平面EDM,AM的长为.………12分
知识点
如图,四边形为矩形,
平面
,
,
平面
于点
,且点
在
上。
(1)求证:;
(2)求四棱锥的体积;
(3)设点在线段
上,且
,试在线段
上确定一点
,使得
平面
.
正确答案
见解析。
解析
(1)因为平面
,
∥
所以,
因为平面
于点
,
………………………………………2分
因为,所以
面
,
则
因为,所以
面
,
则…………………………………………………………………………4
分
(2)
作,因为面
平面
,所以
面
因为,
,所以
…………………………6分
…………………………………8分
(3)因为,
平面
于点
,所以
是
的中点
设是
的中点,连接
…………………………………………………10分
所以∥
∥
因为,所以
∥面
,则点
就是点
…………………12分
知识点
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5. 点D是AB的中点,
(1)求证:AC⊥BC1;
(2)求证:AC 1//平面CDB1;
(3)求异面直线 AC1与 B1C所成角的余弦值。
正确答案
见解析。
解析
(1)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,
∴ AC⊥BC,
又因为 面ABC
又
面
面
AC⊥BC1;
(2)
设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,∴ DE//AC1,
∵ DE平面CDB1,AC1
平面CD
B1,∴ AC1//平面CDB1;
(3)∵ DE//AC1,∴ ∠CED为AC1与B1C所成的角,
在△CED中,ED=AC 1=
,CD=
AB=
,CE=
CB1=2
,
∴ ,
∴ 异面直线 AC1与 B1C所成角的余弦值.
知识点
如图所示,PA⊥平面ABCD,ABCD是矩形,AB = 1,,点F是PB的中点,点E在边BC上移动。
(1)若,求证:
;
(2)若二面角的大小为
,则CE为何值时,三棱锥
的体积为
.
正确答案
见解析
解析
(1)证明:,
为PB中点,
∴ 1分
又⊥平面
,∴
2分
又是矩形,∴
3分
∴,而
4分
∴,∴
5分
而,∴
6分
(2)由(1)知:且
7分
∴为二面角
的一个平面角,则
=60° 8分
∴ 9分
∴,解得
11分
即时,三棱锥
的体积为
12分
知识点
如图,在底面为直角梯形的四棱锥中
,
,
,
,
。
(1)求证:;
(2)当时,求此四棱锥的表面积。
正确答案
见解析。
解析
(1)证明:由题意知 则
(4分)
(2)
∴
.
.(6分)
过D作DH⊥BC于点H,连结PH,则同理可证明,
并且.
(8分)
易得
.
.(11分)
故此四棱锥的表面积
(12分)
知识点
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
, 四边形ABCD是正方形。
(1)求证;
(2)求四棱锥E-ABCD的体积。
正确答案
见解析。
解析
(1)证明:AE是圆柱的母线,
下底面,又
下底面,
…………….3分
又截面ABCD是正方形,所以
⊥
,又
⊥面
,又
面
,
…………….5分
(2)因为母线垂直于底面,所以
是三棱锥
的高…………….6分
由(1)知⊥面
,
面
,
面
⊥面
,
过作
,交
于
,
又面
面
,
面
,
面
,即EO就是四棱锥
的高…………….8分
设正方形的边长为
, 则
,
又,
为直径,即
在中,
, 即
…………….(10分)
…………….(12分)
知识点
19.如图,在四棱锥P-ABCD的底面是边长为2的正方形,PD⊥平面ABCD, E、F分别是PB、AD的中点,PD=2.
(I)求证:BC⊥PC;
(II)求证:EF//平面PDC;
(III)求三棱锥B—AEF的体积.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
5.设是平面
内两条不同的直线,
是平面
外的一条直线,则“
,
”是“
”的( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19. 如图所示,在棱长为2的正方体中,
、
分别为
、
的中点。
(Ⅰ)求证://平面
;
(Ⅱ)求证:;
(Ⅲ)求 。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析