热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

18.已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.

(1)证明:CM⊥SN;

(2)求SN与平面CMN所成角的大小.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:填空题
|
填空题 · 4 分

14.  如图所示,四棱锥中,底面是边长为的菱形,.有下列命题:

①  若的中点,则平面

②  若,则

③  若是正三角形,则平面

④  若,则四棱锥的体积为.

其中正确的命题是(   ).

正确答案

①②④

解析

解析已在路上飞奔,马上就到!

知识点

命题的真假判断与应用棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19. 如图,已知四棱锥中,⊥平面是直角梯形,90º,

(1)求证:

(2)在线段上是否存在一点,使//平面,若存在,指出点的位置并加以证明;若不存在,请说明理由。

正确答案

(1),BC=2,,  ∴

又∵平面PAC⊥平面,平面PAC∩平面=AC,

∴BC⊥平面PAC

又∵PA平面PAC  ∴PA⊥BC

(2)取PC的中点N,连接AN,由是边长为1的正三角形,可知AN⊥PC,由(1)BC⊥平面PAC,可知AN⊥BC,∴AN⊥平面PCBM,

∴AN是四棱锥A—PCBM的高且AN=

由BC⊥平面PAC,可知BC⊥PC,可知四边形PCBM是上、下底边长分别为1和2,PC的长1 为高的直角梯形,其面积

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

18.如图,四棱锥中,底面为平行四边形. 底面.

(I)证明:;

(II)设,求棱锥的高.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

4.设a,b是两条直线,α,β是两个平面,则的一个充分条件是  (    )

A

B

C

D

正确答案

B

解析

解析已在路上飞奔,马上就到!

知识点

充分条件直线与平面平行的判定与性质直线与直线垂直的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

4. 已知平面,则“”是“”成立的(    )

A充要条件

B充分不必要条件

C必要不充分条件

D既不充分也不必要条件

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

充要条件的判定直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19. 如图,在三棱柱中,面为矩形,的中点,交于点

(1)证明:

(2)若,求直线与面成角的余弦值.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 12 分

19.在边长为a的正方形ABCD中,M,E,F,N分别为AB,BC,CD,CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥B - AEF,如图所示.

(I)在三棱锥B—AEF中,求证:AB⊥EF;

(II)求四棱锥E—AMNF的体积.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与直线垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

5.设是平面内两条不同的直线,是平面外的一条直线,则“”是“”(   )

A充要条件

B充分而不必要的条件

C必要而不充分的条件

D既不充分也不必要的条件

正确答案

C

解析

解析已在路上飞奔,马上就到!

知识点

充要条件的判定直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图所示,在棱长为2的正方体中,分别为的中点.

(Ⅰ)求证://平面

(Ⅱ)求证:

(Ⅲ)求三棱锥的体积.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与直线垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

21.如图所示,在棱长为2的正方体中,分别为的中点.

(1)求证://平面

(2)求证:

(3)求 。

正确答案

(1)

连结,在中,分别为的中点,则

(2)

(3)

且 

   即

=

=

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与直线垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

17.如图,已知四边形ABCD和BCEG均为直角梯形,AD//BC,CE//BG,且,平面平面

求证:(I)

(II)求证:平面BDE;

(III)求:几何体EG-ABCD的体积。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

组合几何体的面积、体积问题直线与平面平行的判定与性质直线与直线垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图,在直三棱柱中,,

(1)证明:;

(2)求直线与平面所成角的正切值。

(3)求点A到平面的距离。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 14 分

17.如图,在四棱柱ABCD﹣A1B1C1D1中,AB=BC=CA=,AD=CD=AA1=1,平面AA1C1C⊥平面ABCD,E为线段BC的中点,

(Ⅰ)求证:BD⊥AA1

(Ⅱ)求证:A1E∥平面DCC1D1

(Ⅲ) 若AA1⊥AC,求A1E与面ACC1A1所成角大小.

正确答案

(Ⅰ)证明:在四棱锥ABCD﹣A1B1C1D1中,

∵AB=BC=CA,且AD=DC,

取AC中点O,则BO⊥AC,DO⊥AC,∴B,O,D三点在一条直线上.

又∵面AA1C1C⊥面ABCD,面AA1C1C∩面ABCD=AC,BD⊂面ABCD,BD⊥AC,

∴BD⊥面AA1C1C,AA1⊂面AA1C1C,∴BD⊥AA1

(Ⅱ)证明:连AE,在Rt△DCO中∠DCO=30°

在正△BCA中,∠BCO=60°,∴DC⊥BC,

又在正△BCA中,AE⊥BC,

∴AE∥DC,

又AE⊄面DCC1D1,DC⊂面DCC1D1,∴AE∥面DCC1D1

在四棱锥中,AA1∥DD1,AA1⊄面DCC1D1,DD1⊂面DCC1D1

∴AA1∥面DCC1D1

又AA1∩AE=A,

∴面A1AE∥面DCC1D1

又A1E⊂面AA1E,故A1E∥面DCC1D1

(Ⅲ)解:过E作AC的垂线,设垂足为N,∵面ABCD⊥面AA1C1C,∴EN⊥面AA1C1C,

连A1N,则A1N为A1E在面AA1C1C内的射影,

∴∠EA1N为直线A1E与面AC1所成角,

由已知得:,∴

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质直线与直线垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型:填空题
|
填空题 · 5 分

15.在棱长为1的正方体ABCD-A1B1C1D1中,M、N分别是AC1、A1B1的中点.点在正方体的表面上运动,则总能使MP 与BN 垂直的点所构成的轨迹的周长等于___________.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱的结构特征直线与直线垂直的判定与性质用其它方法求轨迹方程
下一知识点 : 直线和圆的方程
百度题库 > 高考 > 文科数学 > 立体几何与空间向量

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题