- 立体几何与空间向量
- 共2637题
19.如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(Ⅰ)求证:DM∥平面APC;
(Ⅱ)求证:平面ABC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱锥D-BCM的体积.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.如图,已知 DE⊥平面 ACD , DE / / AB , △ ACD 是正三角形, AD = DE AB=2 ,且 F 是 CD 的中点.
(1)求证:AF //平面 BCE ;
(2)求证:平面 BCE ⊥平面 CDE .
(3)求的值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.如图,为圆
的直径,点
在圆
上,
,矩形
所在的平面和圆
所在的平面互相垂直,且
。
(1)求证:;
(2)设的中点为
,求证:
;
(3)设平面将几何体
分成的两个椎体的体积分别为
。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
15.设和
为不重合的两个平面,给出下列命题:
①若内的两条相交直线分别平行于
内的两条直线,则
∥
;
②若外的一条直线
与
内的一条直线平行,则
∥
;
③设,若
内有一条直线垂直于
,则
;
④直线的充要条件是
与
内的两条直线垂直.
其中所有的真命题的序号是__________ .
正确答案
①②
解析
解析已在路上飞奔,马上就到!
知识点
17.如图,为圆
的直径,点
在圆
上,
,矩形
所在的平面和圆
所在的平面互相垂直,且
。
(1)求证:;
(2)设的中点为
,求证:
;
(3)设平面将几何体
分成的两个椎体的体积分别为
。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19. 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,点E为BC中点,点F为B1C1中点.
(Ⅰ)求证:平面A1ED⊥平面A1AEF;
(Ⅱ)求三棱锥E-A1FD的体积.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.已知四边形满足
,
,
是
的中点,将
沿着
翻折成
, 使面
面
,
分别为
的中点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)证明:平面平面
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.设m,n是不同的直线,,
,
是不同的平面,有以下四个命题;其中真命题的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20. 已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将△ADE折起,使平面ADE上平面ABCE,点O、F分别是AE、AB的中点。
(Ⅰ)求证:OF∥平面BDE;
(Ⅱ)平面ODF⊥平面ADE.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.如图,已知矩形的边
,
,点
、
分别是边
、
的中点,沿
、
分别把三角形
和三角形
折起,使得点
和点
重合,记重合后的位置为点
。
(1)求证:平面
平面
;
(2)设、
分别为棱
、
的中点,求直线
与平面
所成角的正弦;
正确答案
(1)证明:
(2)
如图,建立坐标系,则
,
易知是平面PAE的法向量, 设MN与平面PAE 所成的角为
解析
解析已在路上飞奔,马上就到!
知识点
17.三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;
(2)若,
,PB与底面ABC成60°角,
分别是
与
的中点,
是线段
上任意一动点(可与端点重合),求多面体
的体积。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18. 如图,在三棱锥P-ABC中,PA底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.
(I)证明:平面PBE平面PAC ;
(II)在BC上找一点F,使AD∥平面PEF,并说明理由;
(III)在(II)的条件下,若PA=AB=2,求三棱锥B-PEF的体积.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
4.设a,b是两条直线,α,β是两个平面,则的一个充分条件是 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.在直角梯形ABCD中,AB//CD,AB=2BC=4,CD=3,E为AB中点,过E作,垂足为F,(如图一),将此梯形沿EF折起,使得平面ADFE垂直于平面FCBE,(如图二)。
(1)求证:BF//平面ACD;
(2)求多面体ADFCBE的体积。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.如图,直角梯形与等腰直角
所在平面互相垂直,
为
的中点,
(1)求证:;
(2)求四面体的体积。
正确答案
(1)证:取的中点
,连接
、
,则
为中位线,
又故四边形
是平行四边形,即
面
;
面
面
(2)解:,面
面
且交于
面
,即
就是四面体
的高,
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析