热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

4.已知是两条不同的直线,是两个不同的平面,则下面命题中正确的是(    )

A

B

C

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

17.如图,已知四边形ABCD和BCEG均为直角梯形,AD//BC,CE//BG,且,平面平面

求证:(I)

(II)求证:平面BDE;

(III)求:几何体EG-ABCD的体积。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

组合几何体的面积、体积问题直线与平面平行的判定与性质直线与直线垂直的判定与性质平面与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

12.四棱锥的底面为正方形,侧面为等边三角形,且侧面底面,点在底面正方形内(含边界)运动,且满足,则点在正方形内的轨迹一定是(    )

A

B

C

D

正确答案

B

解析

解析已在路上飞奔,马上就到!

知识点

平面的基本性质及推论平面与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

15.若l,m为空间两条不同的直线,为空间两个不同的平面,则l 丄的一个充分条件是(  )

Al//

Bl

Cl丄//

Dl丄m且m//

正确答案

C

解析

解析已在路上飞奔,马上就到!

知识点

充分条件直线与平面平行的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

18.如图,在直三棱柱中,AB⊥BC,E,F分别是的中点.

          

(1)求证:EF∥平面ABC;

(2)求证:平面⊥平面

(3)若,求三棱锥的体积.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图,四棱锥的底面是边长为8的正方形,四条侧棱长均为交于O点,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面平面平面GEFH.

(I)证明:平面ABCD;

(II)GH//EF;

(III)若,求四边形GEFH的面积.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线平行的判定与性质直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 14 分

17.如图,在四棱柱ABCD﹣A1B1C1D1中,AB=BC=CA=,AD=CD=AA1=1,平面AA1C1C⊥平面ABCD,E为线段BC的中点,

(Ⅰ)求证:BD⊥AA1

(Ⅱ)求证:A1E∥平面DCC1D1

(Ⅲ) 若AA1⊥AC,求A1E与面ACC1A1所成角大小.

正确答案

(Ⅰ)证明:在四棱锥ABCD﹣A1B1C1D1中,

∵AB=BC=CA,且AD=DC,

取AC中点O,则BO⊥AC,DO⊥AC,∴B,O,D三点在一条直线上.

又∵面AA1C1C⊥面ABCD,面AA1C1C∩面ABCD=AC,BD⊂面ABCD,BD⊥AC,

∴BD⊥面AA1C1C,AA1⊂面AA1C1C,∴BD⊥AA1

(Ⅱ)证明:连AE,在Rt△DCO中∠DCO=30°

在正△BCA中,∠BCO=60°,∴DC⊥BC,

又在正△BCA中,AE⊥BC,

∴AE∥DC,

又AE⊄面DCC1D1,DC⊂面DCC1D1,∴AE∥面DCC1D1

在四棱锥中,AA1∥DD1,AA1⊄面DCC1D1,DD1⊂面DCC1D1

∴AA1∥面DCC1D1

又AA1∩AE=A,

∴面A1AE∥面DCC1D1

又A1E⊂面AA1E,故A1E∥面DCC1D1

(Ⅲ)解:过E作AC的垂线,设垂足为N,∵面ABCD⊥面AA1C1C,∴EN⊥面AA1C1C,

连A1N,则A1N为A1E在面AA1C1C内的射影,

∴∠EA1N为直线A1E与面AC1所成角,

由已知得:,∴

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质直线与直线垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型: 单选题
|
单选题 · 5 分

5.已知为不同的直线,为不同的平面,则下列说法正确的是(   )

A

B

C

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

命题的真假判断与应用直线与平面平行的判定与性质平面与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

9.三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,且长度分别为3、4、5,则三棱锥P-ABC外接球的表面积是(    )

A

B

C

D

正确答案

C

解析

解析已在路上飞奔,马上就到!

知识点

球的体积和表面积与球体有关的内切、外接问题平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

16.如图,在四棱锥中,底面是正方形,侧面底面,且分别为上的点。

(1)如果,求证:直线//平面

(2)如果,求证:直线平面

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.已知在四棱锥S—ABCD中,底面ABCD是平行四边形,若SB丄AC,SA = SC.(1)求证:平面SBD丄平面(2)若 AB = 2,SB = 3,cos∠SCB=,∠SAC=60。,求四棱锥 S—ABCD 的体积.

正确答案

如图所示(1)设AC∩BD=O,连接SO

因为SA=SC,

所以SO∩SB=S,

所以AC⊥平面SBD,

因为AC在平面ABCD内,

所以平面SBD⊥平面ABCD

(2)⊥平面ABCD,即

由(1)知,AC⊥BD,所以底面ABCD是菱形,

所以BC=AB=2

因为SB=3,cos∠SCB=1/8

所以由余弦定理可得,SC=2,

所以∠SAC=60°,

所以SAC是等边三角形

所以在Rt△SOH中,SH=SO*sin60°=3/2

所以

解析

证AC垂直于面ABCD, 设AC交BD于0,因为SA=SC,SO交SB于S,所以AC垂直于平面SBD,因为AC在平面ABCD内,所以面SBD垂直于面ABCD.求底面面积时,先用余弦定理求出角SOB=120度,角SOH=60度,所以四棱锥的体积为  

考查方向

 立体几何中的相关计算和证明

解题思路

通过线线垂直得到线面垂直,进而得到面面垂直,找清四棱锥的底面和高,利用公式求解。

易错点

面面垂直概念混淆,立体感不强

知识点

棱柱、棱锥、棱台的体积平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=CD,BE⊥DF.(Ⅰ)若M为EA中点,求证:AC∥平面MDF;(Ⅱ)若AB=2,求四棱锥E-ABCD的体积.

正确答案

(1)略;(2)

解析

⑴证明:设交于点,连结,在矩形中,点中点,

因为中点,

所以

又因为平面平面

所以∥平面

⑵解:取中点为,连结,平面平面,平面平面平面

所以平面

同理平面

所以,的长即为四棱锥的高,在梯形

所以四边形是平行四边形,

所以平面

又因为平面

所以

所以平面.

注意到

所以 .

考查方向

本题考查了立体几何中的线面平行和体积.属于考中的高频考点。

解题思路

本题考查立体几何,解题步骤如下:

1、转化为证明线线平行。

2、利用体积公式求解。

易错点

第一问中的线面平行的转化。

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2√3,PA=ED=2AE=2.(1)若(λ∈R),且PA∥平面,求λ的值;(2)求证:平面;(3)求直线PB与平面ABCD所成的角.

正确答案

见解析

解析

试题分析:本题属于立体几何中的基本问题,题目的难度是逐渐由易到难.

(1)连接于点,连接.

因为平面,平面平面

所以.

因为,所以.

因为,所以.

所以.

(2)因为

所以.

所以.

又平面平面,且平面平面,

平面

(3)由(2)知,平面

∴ ∠PBE为直线PB与平面ABCD所成的角,

在RtΔPEB中,

60°,

直线PB与平面ABCD所成的角为60°.

考查方向

本题考查了立体几何中的线面位置关系的问题.属于高考中的高频考点。

解题思路

本题考查立体几何中的线面位置关系,解题步骤如下:1、利用线面平行的性质定理。2、利用线面垂直的定义及判定定理转化。

易错点

1、第一问中的线线平行的判定。2、第二问中求证线面垂直时要与平面内的两条相交直线垂直。

知识点

直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型:填空题
|
填空题 · 5 分

15.半径为1的球面上有四个点,球心为点过点,则三棱锥的体积为___________.

正确答案

解析

由题意可知图形如图所示,

AB过点,三角形ABD与三角形ACB都是等腰直角三角形,且,几何体的体积为

考查方向

本题主要考查了空间几何体的体积问题,主要考查了“分割法”求体积的思想。

解题思路

根据图中的有关关系,确定图形的特征,将三棱锥分割为即可很容易地求解。

易错点

本题容易因对球面上的问题想象不到位,不能很好地寻求分割图形的策略而导致错误的出现。

知识点

平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 14 分

18. 如图,四边形是菱形,平面, ,点的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)求三棱锥的体积.

正确答案

(Ⅰ)略;

(Ⅱ)略;

(Ⅲ)

解析

(Ⅰ)取中点,连接

因为点的中点,

所以

,且

所以

所以四边形为平行四边形.

所以

平面平面,

所以平面

(Ⅱ)连接

因为四边形为菱形,,所以为等边三角形.

因为中点,所以

又因为平面平面,所以

平面

所以平面

所以平面

平面,所以平面平面

法二:因为四边形为菱形,,所以为等边三角形.

因为中点,所以

又因为平面平面

所以平面平面

又平面平面,

所以平面

所以平面

平面,所以平面平面

(Ⅲ)因为

,   所以.   

考查方向

本题考查了线面平行,面面垂直的证明,体积的求法,在近几年的各省高考题出现的频率非常高.

解题思路

(Ⅰ)借助于平行四边形,得到线线平行,进而得到线面平行;

(Ⅱ)利用面面垂直的判定定理;

易错点

定理记忆不清致误.

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
下一知识点 : 直线和圆的方程
百度题库 > 高考 > 文科数学 > 立体几何与空间向量

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题