热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表)和频率分布直方图(如图).

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.


18.求的值.


19.求在未来连续3天里,有连续2天的日销售量都高于100个且另1天的日销售量不高于50个的概率;

第(1)小题正确答案及相关解析

正确答案

=,  =

解析

解:由频率分布直方图,得:=,  =…(2分)

考查方向

本题主要考查了统计、独立事件的概率及二项分布的应用,常见的还有几何概型和超几何分布。

解题思路

本题主要考查了统计、独立事件的概率及二项分布的应用,解题步骤如下:由频率算出频率/组距的值再作出对应的图。

易错点

审题不清和考虑不全面导致出错。

第(2)小题正确答案及相关解析

正确答案

0.108

∴EX=3×0.6=1.8

解析

解:设A1表示事件“日销售量高于100个”,A2表示事件“日销售量不高于50个”,B表示事件“在未来连续3天里有连续2天日销售量高于100个且另1天销售量不高于50个”.P(A1)=0.30+0.20+0.10=0.6,P(A2)=0.15,
故所求概率:P(B)=0.6×0.6×0.15×2=0.108.

20.用X表示在未来3天里日销售量高于100个的天数,求随机变量X的分布列和数学期望.

解:依题意,X的可能取值为0,1,2,3,且X~B(3,0.6).
P(X=0)=          P(X=1)=

P(X=2)=    P(X=3)=

∴X的分布列为

∴EX=3×0.6=1.8.

考查方向

本题主要考查了统计、独立事件的概率及二项分布的应用,常见的还有几何概型和超几何分布。

解题思路

本题主要考查了统计、独立事件的概率及二项分布的应用,解题步骤如下:

根据题设求出相应概率。

本题主要考查了统计、独立事件的概率及二项分布的应用,解题步骤如下:分析的所有可能性,并求出其对应的概率,列出分布列,求出期望。

易错点

审题不清和考虑不全面导致出错。

审题不清和考虑不全面导致出错。

1
题型:简答题
|
简答题 · 12 分

某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意.

19.根据以上资料完成下面的2×2列联表,若据此数据算得,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?

20.以此“满意”的频率作为概率,求在3人中恰有2人满意的概率;

21.从以上男性用户中抽取2人,女性用户中抽取1人,其中满意的人数为,求的分布列与数学期望.

第(1)小题正确答案及相关解析

正确答案

(1)在犯错的概率不超过5%的前提下,不能认为“满意与否”与“性别”有关;

解析

:(Ⅰ)

<3.84 1,

∴在犯错的概率不超过5%的前提下,不能认为“满意与否”与“性别”有关。

考查方向

本题主要考查独立性检验、n次独立重复试验的概率和离散型随机变量的分布列和期望等知识,意在考查考生处理数据和分析问题解决问题的能力。

解题思路

先将题中给出的茎叶图处理成列联表,然后带入求得<3.84 1判断即可;

易错点

将茎叶图处理成列联表数据出错,

在求<3.84 1时运算结果出错;

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(Ⅱ)由频率估计“满意”的概率为

∴在3人中恰有2人满意的概率为;【或

考查方向

本题主要考查独立性检验、n次独立重复试验的概率和离散型随机变量的分布列和期望等知识,意在考查考生处理数据和分析问题解决问题的能力。

解题思路

先求出“满意”的概率,然后利用n次独立重复试验的概率求法求出概率;

易错点

求概率时忘记乘以

第(3)小题正确答案及相关解析

正确答案

(3)

的分布列为

数学期望

解析

(Ⅲ)的可能取值为0、1、2、3,

,      

,      

的分布列为

数学期望

考查方向

本题主要考查独立性检验、n次独立重复试验的概率和离散型随机变量的分布列和期望等知识,意在考查考生处理数据和分析问题解决问题的能力。

解题思路

先求出随机变量的取值和取各个值的概率后利用公式求出其期望。

易错点

不会求随机变量取各个值的概率。

1
题型: 单选题
|
单选题 · 5 分

9.已知一次函数满足,那么对于a,使得上恒成立的概率为(  )

A

B

C

D

正确答案

B

解析

f(0)=-1;f(1)=a-1, 使得上恒成立,则a-1, a, 总长度为3,发生的长度为2,所以概率为

考查方向

本题考查的是函数的恒成立。以及几何概率。

解题思路

由于是直线型函数,求两个端点值,f(1)=a-1<0,解得 a,

易错点

对于恒成立问题理解错,数形结合应用。

知识点

函数恒成立问题随机事件的频率与概率
1
题型:简答题
|
简答题 · 13 分

以下茎叶图记录了甲、乙两组各四名同学的植树棵树,乙组记录中有一个数据模糊,无法确认,在图中以X表示。

19.如果X=8,求乙组同学植树棵树的平均数和方差。

20.如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。

第(1)小题正确答案及相关解析

正确答案

解析

当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10。………2

所以平均数为;…………………………………………4

方差为…………6

考查方向

本小题主要考查统计与概率的相关知识,包括茎叶图、概率. 本题主要考查学生数据处理能力.

解题思路

按题意直接求平均,按公式直接求方差

易错点

第(2)问随机变量找不准,对应有概率计算不准确。

第(2)小题正确答案及相关解析

正确答案

随机变量Y的分布列为:

数学期望19

解析

X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;

乙组同学的植树棵数是:9,8,9,10。

分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,

这两名同学植树总棵数Y的可能取值为17,18,19,20,21。

事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,

所以该事件有2种可能的结果,

因此P(Y=17)=

同理可得P(Y=18)=P(Y=19)= P(Y=20)=P(Y=21)=

所以,随机变量Y的分布列为:

EY=17×+18×+19×+20×+21×=19。……………………12

考查方向

本小题主要考查统计与概率的相关知识,包括茎叶图、概率. 本题主要考查学生数据处理能力.

解题思路

统计事件总为4×4=16,总棵数Y的可能取值为17,18,19,20,21。算出概率,列分布列,直接求数学期望

易错点

第(2)问随机变量找不准,对应有概率计算不准确。

1
题型:简答题
|
简答题 · 12 分

周立波是海派清口创始人和《壹周·立波秀》节目的主持人,他的点评视角独特,语言幽默犀利,给观众留下了深刻的印象.某机构为了了解观众对《壹周·立波秀》节目的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)

19.从这60名男观众中按对《壹周·立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?

20,根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱《壹周·立波秀》节目有关.(精确到0.001)

21.从19题中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱《壹周·立波秀》节目的概率.

第(1)小题正确答案及相关解析

正确答案

喜爱的观众有4名;不喜爱的观众有2名.

解析

抽样比为,则样本中喜爱的观众有40×=4名;不喜爱的观众有6﹣4=2名.

考查方向

分层抽样的统计方法

解题思路

直接计算抽样比,即可算出喜爱与不喜爱的人数;

易错点

对“独立性检验的思想”不理解易出错

第(2)小题正确答案及相关解析

正确答案

不能在犯错误的概率不超过0.025的前提下认为观众性别与喜爱有关.

解析

假设:观众性别与喜爱无关,由已知数据可求得,

∴ 不能在犯错误的概率不超过0.025的前提下认为观众性别与喜爱有关.

考查方向

独立性检验的思想及其初步应用.

解题思路

直接代入公式计算,通过表中数据得出相应结论

易错点

对“独立性检验的思想”不理解易出错

第(3)小题正确答案及相关解析

正确答案

0.4

解析

记喜爱的4名男性观众为a,b,c,d,不喜爱的2名男性观众为1,2;则基本事件分别为:(a,b),(a,c),(a,d),(a,1),(a,2),(b,c),(b,d),(b,1),(b,2),(c,d),(c,1),(c,2),(d,1),(d,2),(1,2).

其中选到的两名观众都喜爱的事件有6个,

故其概率为P(A)=

考查方向

等可能事件的概率

解题思路

直接列出总事件及发生事件的情况,直接求比。

易错点

对“独立性检验的思想”不理解易出错

下一知识点 : 互斥事件、对立事件的概率
百度题库 > 高考 > 理科数学 > 随机事件的频率与概率

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题