- 随机事件的频率与概率
- 共73题
有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复,若上午不测“握力”项目,下午不测“台阶,其余项目上、下午都各测试一人,则不同的安排方式共有种 (用数字作答)。
正确答案
264
解析
本题考查了排列组合及其应用问题,关键是推理与分析的应用,以及分类讨论思维等。
先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、“台阶”测试,共有种不同安排方式;接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A、B、C同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D同学选择“握力”测试,安排A、B、C同学分别交叉测试,有2种;若D同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有种方式,安排A、B、C同学进行测试有3种;根据计数原理共有安排方式的种数为(2+×3)=264,故填264
知识点
将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有
正确答案
解析
略
知识点
在样本的频率分布直方图中,一共有个小矩形,第3个小矩形的面积等于其余m-1个小矩形面积和的,且样本容量为100,则第3组的频数是 ( )
正确答案
解析
略。
知识点
将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A、B必须放入相邻的抽屉内,文件C、D也必须放在相邻的抽屉内,则所有不同的放法有 ( )
正确答案
解析
略。
知识点
甲、乙、丙三位学生独立地解同一道题,甲做对的概率为乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:
(1)求至少有一位学生做对该题的概率;
(2)求m,n的值;
(3)求的数学期望.
正确答案
(1)
(2)
(3)
解析
解:设“甲做对”为事件,“乙做对”为事件,“丙做对”为事件,由题意知,
.
(1)由于事件“至少有一位学生做对该题”与事件“”是对立的,
所以至少有一位学生做对该题的概率是.
(2)由题意知, ,
整理得 ,.
由,解得,.
(3)由题意知
,
=,
∴的数学期望为=.
知识点
扫码查看完整答案与解析