热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

函数,其中实数为常数。

(1) 当时,求函数的单调区间;

(2) 若曲线与直线只有一个交点,求实数的取值范围。

正确答案

(1)的单调递增区间是;单调递减区间是

(2)

解析

(1)因为………………2分

时,,令,所以

的变化情况如下表:

………………4分

所以的单调递增区间是

单调递减区间是………………6分

(2)令,所以只有一个零点………………7分

因为

时,,所以只有一个零点0  ………………8分

时,成立,

所以单调递增,所以只有一个零点………………9分

时,令,解得……………10分

所以的变化情况如下表:

有且仅有一个零点等价于………………11分

,解得………………12分

综上所述,的取值范围是………………13分

知识点

利用导数研究函数的单调性利用导数求函数的极值
1
题型:简答题
|
简答题 · 14 分

已知函数,.

(1)讨论函数的单调区间;

(2)若函数处取得极值,对,恒成立,求实数的取值范围.

正确答案

见解析

解析

(1)在区间上, .     ……………………1分

①若,则,是区间上的减函数;   ……………3分

②若,令.

在区间上, ,函数是减函数;

在区间上, ,函数是增函数;

综上所述,①当时,的递减区间是,无递增区间;

②当时,的递增区间是,递减区间是.   …………6分

(2)因为函数处取得极值,所以

解得,经检验满足题意.                                     …………7分

由已知       …………………8分

,则    …………………10分

易得上递减,在上递增,              …………………12分

所以,即。                   …………14分

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求函数的最值利用导数求参数的取值范围
1
题型: 单选题
|
单选题 · 5 分

函数f (x)的定义域为R,导函数的 图像如图1所示,则函数f (x)

A无极大值点,有四个极小值点

B有三个极大值点,两个极小值点

C有两个极大值点,两个极小值点

D有四个极大值点,无极小值点

正确答案

C

解析

由题图知= 0的x值有4个,再由极值定义判断可知C为答案

知识点

函数的图象利用导数研究函数的单调性利用导数求函数的极值
1
题型:简答题
|
简答题 · 13 分

已知函数

(1)求函数g(x)的单调区间;

(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;

(3)当a≥时,若使成立,求实数a的取值。

正确答案

见解析。

解析

知识点

利用导数研究函数的单调性
1
题型:简答题
|
简答题 · 14 分

已知函数

(1)当时,求的极值;

(2)时,讨论的单调性;

(3)若对任意的恒有成立,求实数的取值范围。

正确答案

见解析。

解析

(1)解:

(2)

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求函数的最值利用导数求参数的取值范围
下一知识点 : 利用导数求函数的极值
百度题库 > 高考 > 文科数学 > 利用导数研究函数的单调性

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题