热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 16 分

22.给定数列,记该数列前中的最大项为,即;该数列后中的最小项为,即

(1)对于数列:3,4,7,1,求出相应的

(2)若是数列的前项和,且对任意其中为实数,

①设,证明数列是等比数列;

②若数列对应的满足对任意的正整数恒成立,求实数的取值范围.

正确答案

(1)

(2)①证明略;②

解析

(1)当=1时,A1=3,B1=1,从而可求得

同理可得                                     

(2)①当时,所以                       

时,

两式相减得所以

所以,数列是以为首项、为公比的等比数列.             

②由①知: ;

由于

所以由推得

所以对任意的正整数恒成立.   

因为所以

  

,得

,所以解得,所以  

考查方向

本题考查数列的综合应用,突出考查考查推理论证与抽象思维的能力,是难题.数列的综合应用在近几年各省市的高考试卷中频频出现,是高考的热点问题,往往以等差数列、等比数列为载体,涉及递推公式、通项公式、前项和,结合数列单调性、数列恒成立等知识交汇命题.

解题思路

题(1),当=1时,A1=3,B1=1,从而可求得,同理可求得的值;

题(2)①,利用等比数列的定义证明是等比数列,对含有的表达式,先利用)求得递推关系,将代入递推关系化简求得,同时验证的初始值,从而证明是等比数列;

题(2)②,由①得到的通项公式,根据求得,从而得到关于不等式,解得的取值范围.

易错点

对含有的表达式,往往利用求通项时容易忽视的要求,同时要验证的初始值;对新定义的不理解;恒成立问题的恰当转化.

知识点

等比数列的判断与证明数列与不等式的综合
1
题型:简答题
|
简答题 · 12 分

18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.求证:是等比数列;设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1

正确答案

(1)

(2)略.

解析

本题属于数列中的基本问题,题目的难度是逐渐由易到难.

(1)由已知得。所以是以1为首项,2为公比的等比数列。

(2)由上知

        ……①

   ……②

①-②得:

即(n+l) Tn<nSn+1

考查方向

本题考查了数列的问题.属于高考中的高频考点。

易错点

错位相减法求和时相减的结果项数易错。

知识点

等比数列的判断与证明数列与不等式的综合
1
题型: 单选题
|
单选题 · 5 分

5. 已知数列是等比数列,是1和3的等差中项,则=

A

B

C

D

正确答案

D

解析

通过观察,可以看到,b2,b16和b9之间的关系,可以得到=b92, ,又根据等差中项的性质,可以得到b9=(1+3)÷2=2,所以=22=4

考查方向

等比数列的定义及性质,等差中项的性质

解题思路

利用等差中项求b9,进而求解答案

易错点

发现不到b2b16和b9之间的关系。

知识点

等比数列的判断与证明
1
题型: 单选题
|
单选题 · 5 分

6. 若成等比数列,则下列三个数:①  ②  ③,必成等比数列的个数为(      )

A0

B1

C2

D3

正确答案

B

解析

由题可知:等比数列的相邻两项相乘仍然是等比数列。

A选项不正确,C选项不正确,D选项不正确,所以选B选项。

考查方向

本题主要考查等比数列的性质

解题思路

代入特值计算或由等比数列的基本性质,即可得到结果。

A选项不正确,C选项不正确,D选项不正确,所以选B选项。

易错点

本题易在代特值时发生错误。

知识点

平面向量数量积的运算等比数列的判断与证明
1
题型:填空题
|
填空题 · 5 分

6.设等比数列的前项的和为,若,则的值为_______

正确答案

63

解析

由等比数列前n项和的性质 成等比数列,则成等比数列,,解得

设等比数列{an}的首项为a1,公比为q.显然q≠1,由题意得

解之得:所以,

考查方向

本题主要考查等比数列的基本运算,等比数列的求和,考查学生的运算能力,难度中等.

解题思路

本题主要考查等比数列的基本运算,等比数列的求和。

解题步骤如下:利用公式或性质,列出等式。正确运算,得出结果。

易错点

本题易错点是公式会弄错,运算上出现错误。

知识点

等比数列的判断与证明
下一知识点 : 等比数列的性质及应用
百度题库 > 高考 > 理科数学 > 等比数列的判断与证明

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题