- 等比数列的判断与证明
- 共122题
22.给定数列,记该数列前
项
中的最大项为
,即
;该数列后
项
中的最小项为
,即
;
.
(1)对于数列:3,4,7,1,求出相应的;
(2)若是数列
的前
项和,且对任意
有
其中
为实数,
且
.
①设,证明数列
是等比数列;
②若数列对应的
满足
对任意的正整数
恒成立,求实数
的取值范围.
正确答案
(1);
(2)①证明略;②.
解析
(1)当=1时,A1=3,B1=1,从而可求得
,
同理可得
(2)①当时,
所以
当时,
两式相减得所以
又
所以,数列是以
为首项、
为公比的等比数列.
②由①知: ;
又,
由于
所以由推得
所以对任意的正整数
恒成立.
因为所以
由,得
,
但且
,所以
解得
,所以
考查方向
本题考查数列的综合应用,突出考查考查推理论证与抽象思维的能力,是难题.数列的综合应用在近几年各省市的高考试卷中频频出现,是高考的热点问题,往往以等差数列、等比数列为载体,涉及递推公式、通项公式、前项和,结合数列单调性、数列恒成立等知识交汇命题.
解题思路
题(1),当=1时,A1=3,B1=1,从而可求得
,同理可求得
的值;
题(2)①,利用等比数列的定义证明是等比数列,对含有
的表达式
,先利用
(
)求得
与
递推关系,将
代入递推关系化简求得
,同时验证
的初始值
,从而证明
是等比数列;
题(2)②,由①得到的通项公式,根据
求得
,从而得到
关于不等式
,解得
的取值范围.
易错点
对含有的表达式
,往往利用
求通项时容易忽视
的要求,同时要验证
的初始值;对新定义
、
的不理解;恒成立问题的恰当转化.
知识点
18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.求证:是等比数列;设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1.
正确答案
(1);
(2)略.
解析
本题属于数列中的基本问题,题目的难度是逐渐由易到难.
(1)由已知得。所以
是以1为首项,2为公比的等比数列。
(2)由上知。
……①
……②
①-②得:。
即(n+l) Tn<nSn+1.
考查方向
本题考查了数列的问题.属于高考中的高频考点。
易错点
错位相减法求和时相减的结果项数易错。
知识点
5. 已知数列是等比数列,
是1和3的等差中项,则
=
正确答案
解析
通过观察,可以看到,b2,b16和b9之间的关系,可以得到=b92, ,又根据等差中项的性质,可以得到b9=(1+3)÷2=2,所以
=22=4
考查方向
解题思路
利用等差中项求b9,进而求解答案
易错点
发现不到b2b16和b9之间的关系。
知识点
6. 若成等比数列,则下列三个数:①
②
③
,必成等比数列的个数为( )
正确答案
解析
由题可知:等比数列的相邻两项相乘仍然是等比数列。
A选项不正确,C选项不正确,D选项不正确,所以选B选项。
考查方向
解题思路
代入特值计算或由等比数列的基本性质,即可得到结果。
A选项不正确,C选项不正确,D选项不正确,所以选B选项。
易错点
本题易在代特值时发生错误。
知识点
6.设等比数列的前
项的和为
,若
,则
的值为_______
正确答案
63
解析
由等比数列前n项和的性质 成等比数列,则
成等比数列,
,解得
.
设等比数列{an}的首项为a1,公比为q.显然q≠1,由题意得
解之得:
所以,
考查方向
本题主要考查等比数列的基本运算,等比数列的求和,考查学生的运算能力,难度中等.
解题思路
本题主要考查等比数列的基本运算,等比数列的求和。
解题步骤如下:利用公式或性质,列出等式。正确运算,得出结果。
易错点
本题易错点是公式会弄错,运算上出现错误。
知识点
扫码查看完整答案与解析