- 等比数列的判断与证明
- 共122题
12.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.
1 2 3 4 5 … 2013 2014 2015 2016
3 5 7 9 ………… 4027 4029 4031
8 12 16 ………………… 8056 8060
20 28 ………………………… 16116
…………………………………………
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为________________
正确答案
解析
数表的观察数表,可以发现规律:每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,-----,第2015行公差为


考查方向
解题思路
观察数表,可以发现规律:每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,第2015行公差为
易错点
找不到规律。
知识点
9.在△ABC中,内角A,B,C 所对的边分别为 a,b,c,若 cos 2B+cosB=1-cos AcosC 则( )
正确答案
解析
由cos 2B+cosB=1-cos AcosC
得到sin 2B=cos Acos C-cos(A+C)
所以sin 2B=cos Acos C-cos AcosC+sinAsinC
所以sin 2B=sinAsinC
由正弦定理得,b2 = ac,所以a,b,c 成等比数列,故选B。
考查方向
解题思路
1.先利用三角函数中的公式将cos 2B+cosB=1-cos AcosC化简;
2.利用正弦定理得到边之间的关系即可。
易错点
1.对于题中cos 2B+cosB=1-cos AcosC的化简不会入手;
2.对于三角函数的化简出错
知识点
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列

(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
正确答案
(1)
当


当





(2)当

当
由

即
解得

解析
本题属于数列的应用题,题目的难度是中等,本题的关键是:
(1)、从所给的数列中找出规律,并求出两数列的通项公式;
(2)、再根据数列的通项公式的分段函数性质,求出各自的前n项和,最后利用函数的性质给出答案。这类数列的应用题型较为常见。
考查方向
本题考查了数列与函数之间的综合应用,特别是分段函数与数列的应用
易错点
1、分类讨论:



知识点
已知函数




(1)求证:数列
(2) 若




(3)若



正确答案
(1) 证:由题意
即
∴
∴
∵常数


∴数列


(2) 当


所以
因为

因而最小值为
(3) 由(1)知,


即

当



当




∵
∴当

∴

∴
综上所述,存在实数
解析
本题属于数列与不等式的综合应用题,题目的难度是偏难,本题的关键是:
(1)、利函数的性质求出数列的通项公式;
(2)、利用等比数列的求和公式求出前n项和的表达式,并求出最小值;
(3)、根据数学归纳法,分类讨论出k的取值范围。
考查方向
本题考查了数列的综合应用题,特别是数列与不等式之间的应用题
易错点
1、由


知识点
18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.
(1)求证:
(2)设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1.
正确答案
(1)
(2)略.
解析
试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.
(1)由已知得
所以
(2)由上知


①-②得:
即(n+l) Tn<nSn+1.
考查方向
本题考查了数列的问题.属于高考中的高频考点。
解题思路
本题考查数列问题,解题步骤如下:
(1)利用等比数列的定义证明。
(2)利用错位相减法求和。
易错点
错位相减法求和时相减的结果项数易错。
知识点
扫码查看完整答案与解析















