- 直线、平面平行的判定与性质
- 共628题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
如图13,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点。
正确答案
见解析。
解析
(1)证明:连接BD交AC于点O,连接EO.
因为ABCD为矩形,所以O为BD的中点。
又E为PD的中点,所以EO∥PB.
因为EO⊂平面AEC,PB⊄平面AEC,
所以PB∥平面AEC.
(2)
因为PA⊥平面ABCD,ABCD为矩形,
所以AB,AD,AP两两垂直。
知识点
在平面直角坐标系中,椭圆
的中心为原点,焦点
在
轴上,离心率为
。过
的直线L交C于
两点,且
的周长为16,那么
的方程为()。
正确答案
解析
由得a=4.c=
,从而b=8,
为所求。
知识点
下列命题正确的是( )
正确答案
解析
若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.
知识点
(几何证明选讲选做题)如图3,是半径为
的圆
的两条弦,他们相交于AB的中点P,
,
,则
=_________。
正确答案
。
解析
因为点P是AB的中点,由垂径定理知, .在
中,
.由相交弦定理知,
,即
,所以
。
知识点
若的展开式中
的系数是
,则
。
正确答案
1
解析
略
知识点
如图,在四面体中,
平面
,
.
是
的中点,
是
的中点,点
在线段
上,且
.
(1)证明:平面
;
(2)若二面角的大小为
,求
的大小.
正确答案
见解析
解析
证明(1)方法一:如图6,取的中点
,且
是
中点,所以
。因为
是
中点,所以
;又因为(Ⅰ)
且
,所以
,所以面
面
,且
面
,所以
面
;
方法二:如图7所示,
取中点
,且
是
中点,所以
;取
的三等分点
,使
,且
,所以
,所以
,且
,所以
面
;
(2)如图8所示,
由已知得到面面
,过
作
于
,所以
,过
作
于
,连接
,所以
就是
的二面角;由已知得到
,设
,所以
,
在中,
,所以在
中,
,所以在
中
知识点
如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=
,M,N分别为PB,PD的中点。
(1)证明:MN∥平面ABCD;
(2) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值。
正确答案
见解析
解析
本题主要考察线面平行的证明方法,建系求二面角等知识点。
(1)如图连接BD.
∵M,N分别为PB,PD的中点,
∴在PBD中,MN∥BD。
又MN平面ABCD,
∴MN∥平面ABCD;
(2)如图建系:
A(0,0,0),P(0,0,),M(
,
,0),
N(,0,0),C(
,3,0)。
设Q(x,y,z),则。
∵,∴
。
由,得:
。 即:
。
对于平面AMN:设其法向量为。
∵。
则。 ∴
。
同理对于平面AMN得其法向量为。
记所求二面角A—MN—Q的平面角大小为,
则。
∴所求二面角A—MN—Q的平面角的余弦值为。
知识点
7.在梯形ABCD中,∠ABC=,AD//BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析