- 倒序相加法求和
- 共9题
已知函数,记为的导数,。
(1)求的值;
(2)证明:对任意的,等式成立。
正确答案
见解析。
解析
(1)解:由已知,得
于是
所以
故
(2)证明:由已知,得等式两边分别对x求导,得,
即,类似可得
,
,
.
下面用数学归纳法证明等式对所有的都成立。
(i)当n=1时,由上可知等式成立。
(ii)假设当n=k时等式成立, 即.
因为
,
所以.
所以当n=k+1时,等式也成立。
综合(i),(ii)可知等式对所有的都成立。
令,可得()。
所以()。
知识点
在△ABC中,角A,B,C的对边分别为a,b,c,且2cos B-sin(A-B)sin B+cos(A+C)=,
(1)求cos A的值;
(2)若,b=5,求向量在方向上的投影。
正确答案
见解析
解析
(1)由2cos B-sin(A-B)sin B+cos(A+C)=,得[cos(A-B)+1]cos B-sin(A-B)sin B-cos B=,
即cos(A-B)cos B-sin(A-B)sin B=.
则cos(A-B+B)=,即cos A=.
(2)由cos A=,0<A<π,得sin A=,
由正弦定理,有,
所以,sin B=.
由题知a>b,则A>B,故.
根据余弦定理,有=52+c2-2×5c×,解得c=1或c=-7(舍去)。
故向量在方向上的投影为||cos B=.
知识点
函数的零点个数为
正确答案
解析
在同一坐标系内画出函数和的图像,可得交点个数为3. 故选B.
知识点
20.已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求;
(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.
正确答案
解:
(1)∵点M在直线x=上,设M.
又=,即,,
∴+=1.
① 当=时,=,+=;
② 当时,,
+=+===
综合①②得,+.
(Ⅱ)由(Ⅰ)知,当+=1时, +
∴,k=.
n≥2时,+++ , ①
, ②
①+②得,2=-2(n-1),则=1-n.
当n=1时,=0满足=1-n. ∴=1-n.
(Ⅲ)==,=1++=.
.
=2-,=-2+=2-,
∴,、m为正整数,∴c=1,
当c=1时,,
∴1<<3,
∴m=1.
解析
解析已在路上飞奔,马上就到!
知识点
20. 已知数列{an}为等差数列,且满足an+1=an2-nan+1,n=1,2,3,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
(Ⅲ)当时,设,数列的前项和为,求证:.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析