- 平面向量的基本定理及其意义
- 共52题
P是所在平面内一点,若
,其中
,则P点一定在( )
正确答案
解析
由已知,得,可得
,由共线可知,P点一定在AC边所在直线上。
考查方向
本题主要考查了向量的基本运算以及平面几何的综合应用
易错点
向量基本运算需要仔细运算
知识点
4. 在中,
,
.若点
满足
,则
( )
正确答案
解析
由得,
,从而,
所以,故选C。
考查方向
本题考查了向量的线性运算及三角形法则等知识。
解题思路
由出发,进行变换,推出向量
易错点
向量的三角形法则不能熟练掌握,导致运算错误。
知识点
16.在平面直角坐标系中,设是圆
:
上不同三点,若存在正实数
,使得
,则
的取值范围为 .
正确答案
解析
因为是圆
:
上不同三点,所以
两边平方,得
即,
又,
从而可得,
,
即是
画出可行域如图
又因为,
上式可看成是点(a,b)与点(0,-1)距离的平方和加上点(a,b)与点(0,-1)连线的斜率再减掉1,由图可知,在点(1,0)处它们同时取得最小值,代入可得最小值为2,即取值范围为。
考查方向
本题是解析几何,向量,线性规划的高难度综合题,属于难题。
解题思路
(1)作出点(a,b)的可行域。
(2)找出式子的几何意义。
易错点
(1) 易忽视“点是圆
:
上不同三点”这一条件。
(2)对向量不会处理。
(3)对不会变形。
知识点
3.如图,正方形中,
为
的中点,若
,则
的值为( )
正确答案
解析
,所以
,
,选D。
考查方向
本题主要考察了平面向量的基本定理,属于中档题,是高考的热点,解决此类题的关键是会利用平面向量的基本定理,用两个不共线的向量表示平面内任一向量。
易错点
本题易在向量的表示过程中出现错误。
知识点
16.已知点A(0,-1),B(3,0),C(1,2),平面区域P是由所有满足=λ
+μ
(2<λ≤m,2<μ≤n)的点M组成的区域,若区域P的面积为16,则m+n的最小值为_____________.
正确答案
解析
由题可知,设M(x,y),则=(x,y+1),
=(3,1),
=(1,3),代入条件得
8<x≤3m+n,7<y≤m+3n-1,画出平面区域,利用面积公式可得(m+n)min=
考查方向
本题主要考查线性规划及向量的线性运算。
解题思路
1、画出平面区域
2、化简公式求解.
易错点
本题必须注意利用图像完成。
知识点
扫码查看完整答案与解析