- 向量数乘运算及几何意义
- 共151题
1
题型:填空题
|
若点M是△ABC的重心,则下列向量中与共线的是______.(填写序号)
(1)+
+
(2)+
+
(3)+
+
(4)3+
.
正确答案
对于(1)+
+
=2
不与
共线
对于(2)+
+
=
+
=
不与
对于(3)+
+
=
(
+
)+
(
+
)+
(
+
)=
与
对于(4)3+
=
+
+AC不与
故答案为:(3)
1
题型:填空题
|
在△ABC中,点D在BC上(不含端点),且=r
+s
,则r+s=______.
正确答案
∵点D在BC上(不含端点),
∴=λ
又=
-
∴=λ
-λ
且=r
+s
,
故r+s
=λ
-λ
,
由平面向量基本定理得:
∴r+s=0.
故答案为:0.
1
题型:填空题
|
已知=
+
,设
=λ
,那么实数λ的值是______.
正确答案
由题意有可得 -
= λ(
-
),
∴+
-
=λ(
-
),
∴ (
-
) = λ(
-
),∴λ=
,
故答案为.
1
题型:简答题
|
已知抛物线y2=4x,过点的直线l与抛物线交于A、B两点,且直线l与x轴交于点C.
(1)求证:,
,
成等比数列;
(2 )设,
,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.
正确答案
解:(1)设直线l的方程为:,联立方程可得
得:
①
设,
,
,则
,
②
,
而,
∴,
即,
、
成等比数列
(2):由,
得,
,
即得:
,
,
则
由(1) 中②代入得α+β=-1,故α+β为定值且定值为-1
法2:设直线l的方程为:,
,
,
,
M(0,2)得:
由,
得,
即证.
法3:设直线l的方程为:,
,
,
,
M(0,2)得:
代入
有:即
,
同理:,所以α,β是方程2x2+2x+k=0的两根
故α+β=-1。
1
题型:填空题
|
已知=
+2
,
=
-2
,则2
-3
=______.
正确答案
已知=
+2
,
=
-2
,则2
-3
=2
+4
-3
+6
=-
+10
;
故答案为:-+10
.
下一知识点 : 平面向量的线性运算
扫码查看完整答案与解析