热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型:简答题
|
简答题 · 13 分

某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:

从第一个顾客开始办理业务时计时。

(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;

(2)表示至第2分钟末已办理完业务的顾客人数,求的分布列及数学期望。

正确答案

见解析

解析

设Y表示顾客办理业务所需的时间,用频率估计概率,的Y的分布如下:

(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:

①  一个谷歌办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;

②  第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;(lbylfx)

③  第一个和第二个顾客办理业务所需的时间均为2分钟。

所以

(2)解法一:X所有可能的取值为:0,1,2.

X=0对应第一个顾客办理业务所需的时间超过2分钟,

所以;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以

X=2对应两个顾客办理业务所需的时间均为1分钟,所以

所以X的分布列为

.

解法二:X所有可能的取值为0,1,2.

X=0对应第一个顾客办理业务所需的时间超过2分钟,所以

X=2对应两个顾客办理业务所需的时间均为1分钟,所以

所以X的分布列为

知识点

离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:

(1)工期延误天数Y的均值与方差;

(2)在降水量X至少是300的条件下,工期延误不超过6天的概率。

正确答案

(1)工期延误天数Y的均值为3,方差为9.8

(2)P(Y≤6|X≥300)=

解析

(1)由题意,P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X<300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1

Y的分布列为

∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3

D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8

∴工期延误天数Y的均值为3,方差为9.8;

(2)P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6

由条件概率可得P(Y≤6|X≥300)=

知识点

概率的应用离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

已知这100位顾客中的一次购物量超过8件的顾客占55%。

(1)确定的值,并求顾客一次购物的结算时间的分布列与数学期望;

(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率,(注:将频率视为概率)

正确答案

(1) 

.

(2).

解析

(1)由已知,得所以

该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得

的分布为

X的数学期望为

.

(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则

.

由于顾客的结算相互独立,且的分布列都与X的分布列相同,所以

.

故该顾客结算前的等候时间不超过2.5分钟的概率为.

知识点

相互独立事件的概率乘法公式离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

是不等式的解集,整数

(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;

(2)设,求的分布列及其数学期望

正确答案

见解析。

解析

(1)由,即

由于整数,所以A包含的基本事件为

(2)由于的所有不同取值为所以的所有不同取值为

且有

的分布列为

所以=

知识点

古典概型的概率离散型随机变量及其分布列、均值与方差
百度题库 > 高考 > 理科数学 > 离散型随机变量及其分布列、均值与方差

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题