- 频率分布表
- 共48题
有一个容量为66的样本,数据的分组及各组的频数如下:
根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( )
正确答案
解析
知识点
有一个容量为66的样本,数据的分组及各组的频数如下:
根据样本的频率分布估计,大于或等于31.5的数据约占( )
正确答案
解析
知识点
某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取
学成绩, 制成表
(1) 求


(2) 若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2
名与张老师面谈,求第三组中至少有
正确答案
见解析。
解析
(1) 解:依题意,得
解得,


(2) 解:因为第三、四、五组共有60名学生,用分层抽样方法抽取6名学生,
则第三、四、五组分别抽取


第三组的





则从

















其中第三组的





故第三组中至少有

知识点
某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某此数学考试成绩,得到了样本的频率分布直方图(如图)。根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是_____________________。
正确答案
600
解析
略
知识点
某校高三(1)班共有



(1)求分布表中

(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这

(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
正确答案
见解析。
解析
(1)

(2)设应抽取


故应抽取2名第一组的学生,
(3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为

按时间用分层抽样的方法抽取2名第一组的学生共有

其中既有男生又有女生被抽中的有
所以既有男生又有女生被抽中的概率为
知识点
从某项综合能力测试中抽取50人的成绩,统计如表,则这50人成绩的平均数等于 ▲ 、方差为 ▲ .
正确答案
3;
解析
知识点
某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题统计结果如下图表所示:
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率。
正确答案
见解析。
解析
(1)由频率表中第1组数据可知,第1组总人数为
再结合频率分布直方图可知
∴a=100×0.020×10×0.9=18,
b=100×0.025×10×0.36=9,

(2)第2,3,4组中回答正确的共有54人。
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:
第2组:
第3组:
第4组:
(3)设第2组的2人为





















其中第2组至少有1人被抽中的有








∴第2组至少有1人获得幸运奖的概率为
知识点
某校高三(1)班共有



(1)求分布表中

(2)王老师为完成一项研究,按学习时间用分层抽样的方法从这

(3)已知第一组学生中男、女生人数相同,在(2)的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?
正确答案
见解析。
解析
(1)

(2)设应抽取


故应抽取2名第一组的学生,
(3)在(2)的条件下应抽取2名第一组的学生,记第一组中2名男生为

按时间用分层抽样的方法抽取2名第一组的学生共有

其中既有男生又有女生被抽中的有
所以既有男生又有女生被抽中的概率为
知识点
设

正确答案
-2
解析
∵


知识点
某中学高三实验班的一次数学测试成绩的茎叶图(图3)和频率分布直方图(图4)都受到不同程度的破坏,可见部分如下图所示,据此解答如下问题。
(1)求全班人数及分数在
(2)计算频率分布直方图中
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率。
正确答案
见解析。
解析
(1)由茎叶图可知,分数在




(2) 分数在
所以频率分布直方图中
(3)用








其中满足条件的基本事件有:



所以至少有一份分数在[90,100]之间的概率为
知识点
扫码查看完整答案与解析






























