- 两角和与差的正弦函数
- 共46题
1
题型:简答题
|
已知a,b,c分别是△ABC的三个内角A,B,C的对边,若向量



(1)求角A的大小;
(2)求函数
正确答案
见解析。
解析
(1)因为向量



所以(2b﹣c)cosA=acosC,由正弦定理得:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)
即2sinBcosA=sinB,所以cosA=

(2)因为函数


而

知识点
两角和与差的正弦函数正弦定理平面向量共线(平行)的坐标表示
1
题型:简答题
|
如图,在直角坐标系xOy中,锐角△ABC内接于圆x2+y2=1.已知BC平行于x轴,AB所在直线方程为y=kx+m(k>0),记角A,B,C所对的边分别是a,b,c。
(1)若
(2)若
正确答案
见解析。
解析
(1)变式得:
原式=
(2)
知识点
三角函数的恒等变换及化简求值两角和与差的正弦函数直线与圆的位置关系
1
题型:简答题
|
已知函数

(1)求函数
(2)若函数




正确答案
见解析。
解析
(1)



当

函数

(2)函数





即


知识点
三角函数的周期性及其求法正弦函数的单调性函数y=Asin(ωx+φ)的图象变换三角函数中的恒等变换应用两角和与差的正弦函数
1
题型:简答题
|
已知

(1)求
(2)求
正确答案
见解析。
解析
(1)∵
∴

(2)∵
∴
知识点
同角三角函数间的基本关系三角函数的化简求值两角和与差的余弦函数两角和与差的正弦函数
1
题型:简答题
|
已知函数


正确答案
见解析。
解析


∵
∴
∴
所以,函数在区间的值域是
知识点
正弦函数的定义域和值域三角函数中的恒等变换应用两角和与差的正弦函数
下一知识点 : 两角和与差的正切函数
扫码查看完整答案与解析














