- 相关点法求轨迹方程
- 共18题
已知函数,(
)。
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)当时,若对
,
恒成立,求实数
的取值范围;
(3)设,在(1)的条件下,证明当
时,对任意两个不相等的正数
,有。
已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点。
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点。
已知动圆与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点。
(1)求曲线的方程;
(2)试探究和
的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;
(3)记的面积为
,求
的最大值。
已知圆C的方程为,圆心C关于原点对称的点为A,P是圆上任一点,线段
的垂直平分线
交
于点
.
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)过点B(1,)能否作出直线
,使
与轨迹
交于M、N两点,且点B是线段MN的中点,若这样的直线
存在,请求出它的方程和M、N两点的坐标;若不存在,请说明理由.
在圆上任取一点
,设点
在
轴上的正投影为点
,当点
在圆上运动时,动点
满足
,动点
形成的轨迹为曲线
。
(1)求曲线的方程;
(2)已知点,若
是曲线
上的两个动点,且满足
,求
的取值范围。
平面内与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆或双曲线。
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点,试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2,若存在,求tan∠F1NF2的值;若不存在,请说明理由。
19,已知曲线C的方程为:为常数)。
(1)判断曲线C的形状;
(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线与曲线C交于不同的两点M、N,且
,求曲线C的方程。
扫码查看完整答案与解析