- 频率分布直方图
- 共93题
(本小题满分12分)
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计
的值,并说明理由.
正确答案
(Ⅰ)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,
同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.
由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,
解得a=0.30.
(Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.
由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为
300 000×0.12=36 000.
(Ⅲ)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,
而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,
所以2.5≤x<3.
由0.3×(x–2.5)=0.85–0.73,
解得x=2.9.
所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.
知识点
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
16.求直方图中a的值;
17.设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
18.若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计
的值,并说明理由.
正确答案
(Ⅰ);
解析
(I)由概率统计相关知识,各组频率之和的值为1
∵频率=(频率/组距)*组距
∴
得
考查方向
解题思路
本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.
易错点
本题主要在计算中易错
正确答案
(Ⅱ)36000;
解析
(II)由图,不低于3吨人数所占百分比为
∴全市月均用水量不低于3吨的人数为:(万)
考查方向
解题思路
本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.
易错点
本题主要在计算中易错
正确答案
(Ⅲ)2.9
解析
(Ⅲ)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,
而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,
所以2.5≤x<3.
由0.3×(x–2.5)=0.85–0.73,
解得x=2.9.
所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.
考查方向
解题思路
本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.
易错点
本题主要在计算中易错
11.某高校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为,
,由此得到频率分布直方图如图,
则这80名教师中
年龄小于45岁的教师有________人.
正确答案
48
解析
这80名教师中年龄小于45岁的教师频率为:(0.04+0.08)×5=0.6
这80名教师中年龄小于45岁的教师人数为:0.6×80=48.
考查方向
解题思路
根据直方图中的各个矩形的面积代表了频率,先求出年龄小于45的教师的频率,再根据频率与频数的关系进行求解.
易错点
本题必须注意直方图中的各个矩形的面积代表了频率,频数=频率×样本容量.
知识点
3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( )
正确答案
知识点
某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现采用分层抽样的方法从该年级抽取100名学生进行问卷调查.根据问卷取得了这100名学生每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:①[0,30),② [30,60),③[60,90),④[90, 120),……得到频率分布直方图(部分)如图(4).
19.如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的100名学生,完成下列2×2列联表;并判断是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
20.若在第①组、第②组、第③组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列和数学期望.
正确答案
(1)
由于K2>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关
解析
解:(1)
K2=≈5.556
由于K2>3.841,所以有95%的把握认为学生利用时间是否充分与走读、住宿有关
考查方向
解题思路
(1)根据走读生和住宿生的样本数完成表格,并由表格计算K2确定相关程度
(2)首先计算出第①组、第②组、第③组各抽取的人数,再确定随机变量X的所有可能取值并计算其概率完成分布列,最后计算数学期望。
易错点
各组人数的确定和离散型随机变量的概率的计算
正确答案
(2)
解析
(2)设第i组的频率为Pi(i=1,2,…,8),则由图可知:P1=×30=
,P2=
×30=
,P3=
×30=
,可得:第①组1人,第②组4人,第③组10人。
则X的所有可能取值为0,1,2,3,
的分布列为:
(或由X服从超几何分布,
考查方向
解题思路
(1)根据走读生和住宿生的样本数完成表格,并由表格计算K2确定相关程度
(2)首先计算出第①组、第②组、第③组各抽取的人数,再确定随机变量X的所有可能取值并计算其概率完成分布列,最后计算数学期望。
易错点
各组人数的确定和离散型随机变量的概率的计算
扫码查看完整答案与解析