- 频率分布直方图
- 共93题
某市规定,高中学生三年在校期间参加不少于小时的社区服务
才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段
,
,
,
,
(单位:小时)进行统计,其频率分布直方图如图所示.
19.求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
20.从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量
的分布列和数学期望
和方差
.
正确答案
见解析
解析
根据题意,参加社区服务时间在时间段小时的学生人数为
(人),参加社区服务时间在时间段
小时的学生人数为
(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生
人数为
人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为
考查方向
解题思路
第1问根据样本数据估计总体数据,第2问先把所有可能的情况列出来,然后用频率求概率
易错点
数据收集整理出错
正确答案
见解析
解析
由19题可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小
时的概率为由已知得,随机变量
的可能取值为
.
所以;
;
;
.
随机变量的分布列为
因为~
,所以
考查方向
解题思路
第1问根据样本数据估计总体数据,第2问先把所有可能的情况列出来,然后用频率求概率
易错点
数据收集整理出错
某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
19.若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
20.学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
21.在20题中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50的学生人数为,求
的分布列和数学期望.
附:
正确答案
见解析
解析
设各组的频率为,由图可知,第一组有3人,第二组7人,第三组27人, 因为后四组的频数成等差数列,所以后四组频数依次为
所以视力在5.0以下的频率为3+7+27+24+21=82人,故全年级视力在5.0以下
的人数约为
考查方向
解题思路
图和表相互结合求得,先列出可取的所有情况,然后再求期望
易错点
计算错误;读取数据时有遗漏
正确答案
见解析
解析
,因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系
考查方向
解题思路
图和表相互结合求得,先列出可取的所有情况,然后再求期望
易错点
计算错误;读取数据时有遗漏
正确答案
见解析
解析
依题意9人中年级名次在1~50名和951~1000名分别有3人和6人,
可取0、1、2、3
,
,
,
的分布列为
的数学期望
考查方向
解题思路
图和表相互结合求得,先列出可取的所有情况,然后再求期望
易错点
计算错误;读取数据时有遗漏
某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为.
19.求频率分布图中的值;
20.估计该企业的职工对该部门评分不低于80的概率;
21.从评分在的受访职工中,随机抽取2人,求此2人评分都在
的概率.
正确答案
,
解析
试题分析:本题属于统计与概率的常见题型,题目的难度是比较稳定,属于中档偏易题,由频率之和为1求解出的值; ∵
,∴
.
考查方向
解题思路
本题主要考查了统计、古典概型,解题步骤如下:由频率之和为1求解出的值。
易错点
审题不清和考虑不全面导致出错。
正确答案
,
解析
试题分析:本题属于统计与概率的常见题型,题目的难度是比较稳定,属于中档偏易题,由频率估计出相应概率;
由所给频率分布直方图知,50名受访职工评分不低于80的频率为.
∴该企业职工对该部门评分不低于80的概率估计值为
考查方向
解题思路
本题主要考查了统计、古典概型,解题步骤如下:由频率估计出相应概率。
易错点
审题不清和考虑不全面导致出错。
正确答案
;
解析
试题分析:本题属于统计与概率的常见题型,题目的难度是比较稳定,属于中档偏易题,用列举法求出所有基本事件数和符合所求事件数,再算出对应概率。
受访职工评分在的有:
(人),记为
.
受访职工评分在的有:
(人),记为
.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是:
.又∵所抽取2人的评分都在
的结果有1种,即
,故所求的概率为
.
考查方向
解题思路
本题主要考查了统计、古典概型,解题步骤如下:用列举法求出所有基本事件数和符合所求事件数,再算出对应概率。
易错点
审题不清和考虑不全面导致出错。
4.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若 一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 .
正确答案
9
解析
日销售量不少于150的频率:,其对应的天数为
考查方向
解题思路
先计算出日销售量不少于150的频率,然后求出其对应的天数
易错点
本题易对频率分布直方图理解不透,其每个矩形面积就是频率
知识点
一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图(如图),
19.求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
20.从盒子中随机抽取个小球,其中重量在
内的小球个数为
,求
的分布列和数学期望. (以直方图中的频率作为概率).
正确答案
估计盒子中小球重量的平均值约为克;
解析
(Ⅰ)由题意,得,解得
;
又由最高矩形中点的的横坐标为20,可估计盒子中小球重量的众数约为20(克),
而个样本小球重量的平均值为:
(克)故由样本估计总体,可估计盒子中小球重量的平均值约为
克;
考查方向
解题思路
根据频率分布直方图求出a的值,然后根据直方图估计盒子中小球重量的众数与平均值;
易错点
不会根据频率分布直方图估计平均数;
正确答案
(2)的分布列为:
.
(或者)
解析
(Ⅱ)利用样本估计总体,该盒子中小球重量在内的概率为
,
则.
的可能取值为
、
、
、
,
,
,
,
.
的分布列为:
.(或者
)
考查方向
解题思路
根据题意判断出,后利用二项分布的知识求出其分布列和期望即可。
易错点
看不出二项分布导致运算很麻烦。
扫码查看完整答案与解析