- 函数解析式的求解及常用方法
- 共177题
20.函数是定义在
上的偶函数,且对任意实数
,都有
成立,已知当
时,
。
(1)求时,函数
的表达式;
(2)求时,函数
的表达式;
(3)若函数的最大值为
,在区间
上,解关于
的不等式
。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知平面向量a=(–1),b=(
)。
(1)证明a⊥b;
(2)若存在不同时为零的实数k和t,使x=a+ (t2–3)b,y=–ka+tb,且x⊥y,试求函数关系式k=f(t);
(3)据(2)的结论,讨论关于t的方程f(t)–k=0的解的情况。
正确答案
(1)证明:∵a·b==0,∴a⊥b
(2)解:∵x⊥y,∴x·y=0
即[a+(t2–3)b]·(–ka+tb)=0,整理后得
–ka2+[t–k(t2–3)]a·b+t(t2–3)·b2=0
∵a·b=0,a2=4,b2=1
∴上式化为–4k+t(t2–3)=0,∴k=t(t2–3).
(3)解:讨论方程t(t2–3)–k=0的解的情况,可以看作曲线f(t)=
t(t2–3)与直线y=k的交点个数
于是f′(t)=(t2–1)=
(t+1)(t–1).
令f′(t)=0,解得t1=–1,t2=1.当t变化时,f′(t),f(t)的变化情况如下表:
当t=–1时,f(t)有极大值,f(t)极大值=;
当t=1时,f(t)有极小值,f(t)极小值=–.
而f(t)=(t2–3)t=0时,得t=–
,0,
.
所以f(t)的图象大致如下:
于是当k>或k<–
时,直线y=k与曲线y=f(t)仅有一个交点,则方程有一解;
当k=或k=–
时,直线与曲线有两个交点,则方程有两解;当k=0,直线与曲线有三个交点,但k、t不同时为零,故此时也有两解;当–
<k<0或0<k<
时,直线与曲线有三个交点,则方程有三个解。
解析
解析已在路上飞奔,马上就到!
知识点
17、解答应写出文字说明、证明过程或演算步骤。
(1)不用计算器计算:log3+lg25+lg4+7log72+(-9.8)0
(2)如果f(x-)=(x+
)2,求f(x+1)。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.已知函数(常数
)的图像过点
.
两点。
(1)求的解析式;
(2)若函数的图像与函数
的图像关于直线
对称,若不等式
恒成立,求实数
的取值范围;
(3)若是函数
图像上的点列,
是
正半轴上的点列,
为坐标原点,
是一系列正三角形,记它们的边长是
,探求数列
的通项公式,并说明理由。
正确答案
(1)把和
分别代入
可得:
化简此方程组
可得:
即
可得,
,
代入原方程组可得:
(2)由题意知:为
的反函数,
(
)
即当
恒成立
即
当
恒成立,
只需求函数
在
上的最小值即可,
又在
单调递增,
,
(3)由联立可解得:
,
即,
----12’
的边长为
,
此三角形的高即点
的纵坐标为
,
,两式相减可得:
即数列
为公差为
的等差数列
又,
解析
解析已在路上飞奔,马上就到!
知识点
20. 已知:二次函数的图象过点
,且
。
(1)求:的解析式;
(2)若数列满足
,且
,求:数列
的通项公式;
(3)对于(2)中的数列,求证:
①;
②。
正确答案
解:(1)由,
∴
解得,即
;
(2)∵,
∴ ,由叠加得
,
∴;
(3)①(
)
当时,
②∵(
),
∴,
,
即。
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析