热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

20.如图,一个水轮的半径为,水轮圆心距离水面,已知水轮每分钟转动圈, 如果当水轮上点从水中浮现时(图中点)开始计算时间。

(1)将点距离水面的高度表示为时间的函数,求其解析式;

(2)求点第一次到达最高点时所需要的时间。

正确答案

(1)如图建立直角坐标系,

设角是以为始边,

为终边的角,

每分钟内所转过的角为 

时,

,即

故所求的函数关系式为

(2)令

故点第一次到达最高点大约需要

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法
1
题型:简答题
|
简答题 · 14 分

21.已知,().函数定义为:对每个给定的实数

(1)若对所有实数都成立,求的取值范围;

(2)设.当时,若对任意,存在,使得,求实数的取值范围;

正确答案

(1)“对所有实数都成立”等价于“恒成立”,

,即恒成立,

,所以

的取值范围是

(2) 当时,

对任意,存在,使得

 ,

,当时,    ,

 或  或    ,

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法函数单调性的性质函数的最值及其几何意义函数恒成立问题
1
题型:填空题
|
填空题 · 4 分

12.已知实数,函数,若,则a的值为_______.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法奇偶函数图象的对称性
1
题型:简答题
|
简答题 · 14 分

19.某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),通过市场分析,若每件售价为500元时,该厂当年生产该产品能全部销售完。

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?

正确答案

(1)

(2)当时,

时,取得最大值

时,

当且仅当时,取得最大值

综上所述,当取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法
1
题型:填空题
|
填空题 · 4 分

3.如果一个圆锥的高不变,要使它的体积扩大为原来的9倍,那么他的底面半径应该扩大为原来的________倍。

正确答案

3

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法
下一知识点 : 区间与无穷的概念
百度题库 > 高考 > 理科数学 > 函数解析式的求解及常用方法

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题