- 孟德尔的豌豆杂交实验(二)
- 共13438题
在减数分裂中每对同源染色体配对形成四分体,四分体中的非姐妹染色单体之间经常发生交换.实验表明,交换也可以发生在某些生物体的有丝分裂中,这种现象称为有丝分裂交换.图1是某基因型菊花细胞发生交换的示意图,其中D和d、E和e、F和f表示某对同源染色体上的三对等位基因.
(1)若该细胞发生有丝分裂交换,产生的子代细胞基因型为______.
(2)若让该体细胞有丝分裂产生的变异传给后代,常使用______(填生物技术).该技术的操作顺序是:①制备MS同体培养基;②______;③接种;④培养;⑤移栽;⑥栽培.若进行动物细胞体外培养,需要在______等条件下进行.(至少写出2点)
(3)如果网l是某卵原细胞发生减数分裂交换后的结果,产生的卵细胞基因型为______.
(4)如果细胞在减数分裂和有丝分裂中都发生交换,你认为哪一种分裂方式对遗传多样性的贡献更大?为什么?______
(5)若该菊花的花色由图中的基因D(d)、E(e)及另外一对等位基因B(b)控制,为了进一步探究这对基因(B和b)是否与基因D(d)、E(e)在同一对同源染色体上,某课题小组利用基因型为DdEeBb的植株进行实验验证.请依据要求完成下列步骤.
实验步骤:让该植株自交,观察后代花色并统计分离比.
请写出预期的实验结果(不考虑基因突变、交叉互换),并以图示的形式表示相应的结论.______
______.
正确答案
解:(1)有丝分裂后期,着丝点分裂,姐妹染色单体分离,并在纺锤丝的牵引下,随机移向两极.若DEF基因所在的子染色体和def基因所在的子染色体移向一极,则DEf基因所在的子染色体和deF基因所在的子染色体移向另一极,这样就会形成基因型为DdEeFf的子细胞;若DEF基因所在的子染色体和deF基因所在的子染色体移向一极,则DEf基因所在的子染色体和def基因所在的子染色体移向另一极,这样就会形成基因型为DdEeFF、DdEeff的子细胞.
(2)若让该体细胞有丝分裂产生的变异传给后代,常使用 植物组织培养技术.该技术的操作顺序是:①制备MS同体培养基;②外植体消毒;③接种;④培养;⑤移栽;⑥栽培.若进行动物细胞体外培养,需要在 无菌无毒、适宜的温度和pH、营养充足、气体环境等条件下进行.
(3)由分析可知,产生的卵细胞基因型为DEF或DEf或deF或def.
(4)减数分裂对遗传多样性的贡献更大.因为减数分裂所产生的重组配子能遗传给下一代,有丝分裂产生的细胞只是对个体的局部有影响
(5)B(b)基因存在情况有下列三种:如图所示
根据题意,D_E_bb为紫色,D_E_B_为红色,D_ee__为粉色,dd____为白色.
若为图1,则遵循自由组合规律,子代红:紫:白=9:3:4.
若为图2,则子代红:白=3:1.
若为图3,则子代紫:红:白=1:2:l
故答案为:
(1)DdEeFF、DdEeff或DdEeFf
(2)植物组织培养(1分)外植体消毒(1分)无菌无毒、适宜的温度和pH、营养充足、气体环境(1分)(答出2点即可)
(3)DEF或DEf或deF或def(不考虑字母顺序)
(4)减数分裂对遗传多样性的贡献更大.因为减数分裂所产生的重组配子能遗传给下一代,有丝分裂产生的细胞只是对个体的局部有影响
(5)结果l:红:紫:白=9:3:4;结果2:红:白=3:1;结果3:紫:红:白=1:2:l.
解析
解:(1)有丝分裂后期,着丝点分裂,姐妹染色单体分离,并在纺锤丝的牵引下,随机移向两极.若DEF基因所在的子染色体和def基因所在的子染色体移向一极,则DEf基因所在的子染色体和deF基因所在的子染色体移向另一极,这样就会形成基因型为DdEeFf的子细胞;若DEF基因所在的子染色体和deF基因所在的子染色体移向一极,则DEf基因所在的子染色体和def基因所在的子染色体移向另一极,这样就会形成基因型为DdEeFF、DdEeff的子细胞.
(2)若让该体细胞有丝分裂产生的变异传给后代,常使用 植物组织培养技术.该技术的操作顺序是:①制备MS同体培养基;②外植体消毒;③接种;④培养;⑤移栽;⑥栽培.若进行动物细胞体外培养,需要在 无菌无毒、适宜的温度和pH、营养充足、气体环境等条件下进行.
(3)由分析可知,产生的卵细胞基因型为DEF或DEf或deF或def.
(4)减数分裂对遗传多样性的贡献更大.因为减数分裂所产生的重组配子能遗传给下一代,有丝分裂产生的细胞只是对个体的局部有影响
(5)B(b)基因存在情况有下列三种:如图所示
根据题意,D_E_bb为紫色,D_E_B_为红色,D_ee__为粉色,dd____为白色.
若为图1,则遵循自由组合规律,子代红:紫:白=9:3:4.
若为图2,则子代红:白=3:1.
若为图3,则子代紫:红:白=1:2:l
故答案为:
(1)DdEeFF、DdEeff或DdEeFf
(2)植物组织培养(1分)外植体消毒(1分)无菌无毒、适宜的温度和pH、营养充足、气体环境(1分)(答出2点即可)
(3)DEF或DEf或deF或def(不考虑字母顺序)
(4)减数分裂对遗传多样性的贡献更大.因为减数分裂所产生的重组配子能遗传给下一代,有丝分裂产生的细胞只是对个体的局部有影响
(5)结果l:红:紫:白=9:3:4;结果2:红:白=3:1;结果3:紫:红:白=1:2:l.
小鼠的品系和品种有很多,是实验动物中培育品系最多的动物.目前世界上常用的近交品系小鼠约有250多个,均具有不同特征.以色而论,小鼠的毛色有灰色、棕色、黑色、白色.四种表现型由两对独立遗传的等位基因R、r和T、t决定,且TT个体胚胎致死.将一只黑色雄鼠和多只纯合灰色雌鼠杂交,得到的F1有两种表现型:棕色鼠96只,灰色鼠98只;取F1中的多只棕色鼠雌雄个体相互交配,F2有四种表现型:棕色鼠239只,黑色鼠81只,灰色鼠119只,白色鼠41只.请回答:
(1)R、r基因位于常染色体上,若T、t基因也位于常染色体上,则:
①亲本黑色鼠的基因型是______.
②F2中一只棕色雌鼠正常减数分裂产生2种比例相等的配子,则其基因型为______.
(2)T、t基因也可能位于中X、Y染色体的Ⅰ区段上.现有雌、雄黑色鼠各一只,请设计实验探究T、t基因位于常染色体上还是X、Y染色体的Ⅰ区段上.实验过程如下:
①取这一对黑色鼠多次交配,得F1;
②观察统计F1的______.
结果预测:
a.若______,则这对基因位于常染色体上.
b.若______,则这对基因位于X、Y染色体的Ⅰ区段上.
正确答案
解:(1)①根据两对基因的自由组合规律,若R、r基因位于常染色体上,T、t基因也位于常染色体上,TT个体胚胎致死,可知F2中后代表型,基因型和分离比为棕色鼠(R_Tt):黑色鼠(rrTt):灰色鼠(R_tt):白色鼠(rrtt)=6:2:3:1(由于TT个体胚胎致死,棕色鼠中R_TT个体和黑色鼠rrTT个体胚胎时期死亡),由此可以推测F1中棕色鼠基因型为RrTt,由于灰色鼠为纯合子,基因型为RRtt,则亲本黑色鼠基因型为rrTt,F1中灰色鼠的基因型为Rrtt.
(2)已知F2中棕色鼠基因型为R_Tt,又因为其减数分裂产生2种比例相等的配子,所以基因型为RRTt.
(3)若这对基因位于常染色体,则黑色鼠的基因型为rrTt,后代的性状和分离比为黑色鼠:白色鼠=2:1,其中基因型为rrTT的个体死亡,后代的性别比例可能为1:1,也可能不为1:1;若这对基因位于X、Y染色体的Ⅰ区段上,则亲本黑鼠的基因型可能为rrXTXt,rrXTYt,rrXtYT,亲本组合为rrXTXt×rrXTYt或是rrXTXt×rrXtYT,后代的性状和分离比如下:
a.第一种情况:P:rrXTXt×rrXTYt→rrXTXT(死亡):黑色雌鼠(rrXTXt):黑色雄鼠(rrXTYt):白色雄鼠(rrXtYt )=1:1:1,可以看F1中雌鼠:雄鼠=1:1,且黑色鼠:白色鼠都是2:1,说明与性别无关,则这对基因位于常染色体上.
b.第二种情况:P:rrXTXt×rrXtYT→黑色雌鼠(rrXTXt):白色雌鼠(rrXtXt):rrXTYT(死亡):黑色雄鼠(rrXtYT)=1:1:1,可以看出F1中雌鼠:雄鼠≠1:1,且F1雌雄个体中的表现型不都是黑色鼠:白色鼠=2:1,说明该性状的遗传与性别相关联,则这对基因位于X、Y染色体的Ⅰ区段上.
故答案是:
(1)①rrTt ②RRTt
(2)答案一:②性别比例
a.F1中雌鼠:雄鼠=1:1
b.F1中雌鼠:雄鼠≠1:1(或雌鼠:雄鼠=1:2,或雌鼠:雄鼠=2:1)
答案二:②雌雄个体中的表现型及比例
a.F1中雌雄个体中都是黑色鼠:白色鼠=2:1
b.F1中雌雄个体中的表现型不都是黑色鼠:白色鼠=2:1(或雌鼠均为黑色,雄鼠中黑色鼠:白色鼠=1:1,或雄鼠均为黑色,雌鼠中黑色鼠:白色鼠=1:1)
解析
解:(1)①根据两对基因的自由组合规律,若R、r基因位于常染色体上,T、t基因也位于常染色体上,TT个体胚胎致死,可知F2中后代表型,基因型和分离比为棕色鼠(R_Tt):黑色鼠(rrTt):灰色鼠(R_tt):白色鼠(rrtt)=6:2:3:1(由于TT个体胚胎致死,棕色鼠中R_TT个体和黑色鼠rrTT个体胚胎时期死亡),由此可以推测F1中棕色鼠基因型为RrTt,由于灰色鼠为纯合子,基因型为RRtt,则亲本黑色鼠基因型为rrTt,F1中灰色鼠的基因型为Rrtt.
(2)已知F2中棕色鼠基因型为R_Tt,又因为其减数分裂产生2种比例相等的配子,所以基因型为RRTt.
(3)若这对基因位于常染色体,则黑色鼠的基因型为rrTt,后代的性状和分离比为黑色鼠:白色鼠=2:1,其中基因型为rrTT的个体死亡,后代的性别比例可能为1:1,也可能不为1:1;若这对基因位于X、Y染色体的Ⅰ区段上,则亲本黑鼠的基因型可能为rrXTXt,rrXTYt,rrXtYT,亲本组合为rrXTXt×rrXTYt或是rrXTXt×rrXtYT,后代的性状和分离比如下:
a.第一种情况:P:rrXTXt×rrXTYt→rrXTXT(死亡):黑色雌鼠(rrXTXt):黑色雄鼠(rrXTYt):白色雄鼠(rrXtYt )=1:1:1,可以看F1中雌鼠:雄鼠=1:1,且黑色鼠:白色鼠都是2:1,说明与性别无关,则这对基因位于常染色体上.
b.第二种情况:P:rrXTXt×rrXtYT→黑色雌鼠(rrXTXt):白色雌鼠(rrXtXt):rrXTYT(死亡):黑色雄鼠(rrXtYT)=1:1:1,可以看出F1中雌鼠:雄鼠≠1:1,且F1雌雄个体中的表现型不都是黑色鼠:白色鼠=2:1,说明该性状的遗传与性别相关联,则这对基因位于X、Y染色体的Ⅰ区段上.
故答案是:
(1)①rrTt ②RRTt
(2)答案一:②性别比例
a.F1中雌鼠:雄鼠=1:1
b.F1中雌鼠:雄鼠≠1:1(或雌鼠:雄鼠=1:2,或雌鼠:雄鼠=2:1)
答案二:②雌雄个体中的表现型及比例
a.F1中雌雄个体中都是黑色鼠:白色鼠=2:1
b.F1中雌雄个体中的表现型不都是黑色鼠:白色鼠=2:1(或雌鼠均为黑色,雄鼠中黑色鼠:白色鼠=1:1,或雄鼠均为黑色,雌鼠中黑色鼠:白色鼠=1:1)
科学家对猕猴(2n=42)的代谢进行研究,发现乙醇进入机体内的代谢途径如图所示.缺乏酶1,喝酒脸色基本不变但易醉,称为“白脸猕猴”;缺乏酶2,喝酒后乙醛积累刺激血管引起脸红,称为“红脸猕猴”;还有一种是号称“不醉猕猴”,原因是两种酶都有.请据图回答:
(1)从以上资料可判断猕猴的酒量大小与性别关系不大,判断的理由是______.
(2)基因b由基因B突变形成,基因B也可以突变成其他多种形式的等位基因,这体现了基因突变具有______的特点.若对猕猴进行基因组测序,需要检测______条染色体.
(3)“红脸猕猴”的基因型有______种;一对“红脸猕猴”所生的子代中,有表现为“不醉猕猴”和“白脸猕猴”,若再生一个“不醉猕猴”雄性个体的概率是______.
(4)请你设计实验,判断某“白脸猕猴”雄猴的基因型.
实验步骤:
①让该“白脸猕猴”与多只纯合的“不醉猕猴”交配,并产生多只后代.
②观察、统计后代的表现型及比例.
结果预测:
Ⅰ.若子代全为“红脸猕猴”,则该“白脸猕猴”雄猴基因型为aaBB.
Ⅱ.若子代“红脸猕猴”:“不醉猕猴”接近于1:1,则该“白脸猕猴”雄猴基因型为aaBb.
Ⅲ.若子代______,则该“白脸猕猴”雄猴基因型为______.
正确答案
解:(1)从以上资料可判断猕猴的酒量大小与性别关系不大,判断的理由是与酒精代谢有关的基因位于常染色体上.
(2)基因b由基因B突变形成,基因B也可以突变成其他多种形式的等位基因,说明基因突变具有不定向性.若对猕猴进行基因组测序,需要检测20条常染色体和X、Y染色体,共22条染色体.
(3)据分析可知“红脸猕猴”的基因型为A_B_,故共有AABB,AaBb,AaBB,AABb4种;一对“红脸猕猴”,基因型为A_B_,所生的子代中,有表现为“不醉猕猴”A_bb和“白脸猕猴”aa_,故“红脸猕猴”的基因型为AaBb,若再生一个“不醉猕猴”A_bb雄性个体的概率是 ×
×
=
.
(4)该“白脸猕猴”的基因型为aa_,可能为aaBB,aaBb,aabb,与多只纯合的“不醉猕猴”交配.
若为aaBB,与多只纯合的“不醉猕猴”交配(AAbb),则后代基因型均为AaBb,即全为“红脸猕猴”;
若为aaBb,与多只纯合的“不醉猕猴”交配(AAbb),则后代基因型为AaBb:Aabb=1:1,即“红脸猕猴”:“不醉猕猴”接近于1:1;
若为aabb,与多只纯合的“不醉猕猴”交配(AAbb),则后代基因型均为Aabb,即后代全为“不醉猕猴”.
故答案为:
(1)与酒精代谢有关的基因位于常染色体上
(2)不定向性 22
(3)4
(4)全为“不醉猕猴”aabb
解析
解:(1)从以上资料可判断猕猴的酒量大小与性别关系不大,判断的理由是与酒精代谢有关的基因位于常染色体上.
(2)基因b由基因B突变形成,基因B也可以突变成其他多种形式的等位基因,说明基因突变具有不定向性.若对猕猴进行基因组测序,需要检测20条常染色体和X、Y染色体,共22条染色体.
(3)据分析可知“红脸猕猴”的基因型为A_B_,故共有AABB,AaBb,AaBB,AABb4种;一对“红脸猕猴”,基因型为A_B_,所生的子代中,有表现为“不醉猕猴”A_bb和“白脸猕猴”aa_,故“红脸猕猴”的基因型为AaBb,若再生一个“不醉猕猴”A_bb雄性个体的概率是 ×
×
=
.
(4)该“白脸猕猴”的基因型为aa_,可能为aaBB,aaBb,aabb,与多只纯合的“不醉猕猴”交配.
若为aaBB,与多只纯合的“不醉猕猴”交配(AAbb),则后代基因型均为AaBb,即全为“红脸猕猴”;
若为aaBb,与多只纯合的“不醉猕猴”交配(AAbb),则后代基因型为AaBb:Aabb=1:1,即“红脸猕猴”:“不醉猕猴”接近于1:1;
若为aabb,与多只纯合的“不醉猕猴”交配(AAbb),则后代基因型均为Aabb,即后代全为“不醉猕猴”.
故答案为:
(1)与酒精代谢有关的基因位于常染色体上
(2)不定向性 22
(3)4
(4)全为“不醉猕猴”aabb
某植物花色由三对独立遗传的基因共同决定,花中相关色素的合成途径如图,已知该植物自然情况下自花传粉和异花传粉皆可,请据图回答问题.
(1)囊性纤维病也是基因控制性状的一个实例,其控制方式同上述图示过程是否相同?______(填“相同”或“不相同”).
(2)基因型为AaBbDd的植株自交,假如子代足够多,那么理论上子代中白花植株所占比例为______,子代中纯合紫花植株的基因型有______种.
(3)某红花植株与白花植株杂交,其后代的表现型及其比例为白花:紫花:红花=2:1:1,则该红花植株与白花植株的基因型分别为______和______.
(4)育种工作者将第(3)小题中的红花植株与白花植株杂交产生的种子进行诱变处理,种植后发现一植株上有开蓝色花的枝条,其它花为紫色花.他们提出两种假设:
假设一:诱变产生一个新的显性基因( E),能够把白色前体物质转化为蓝色素,在变异植株中紫色素仍能产生,只是被蓝色掩盖.(基因E与上述三对基因相对独立)
假设二:上图中基因B发生了突变,转变为决定蓝色素合成的基因.
现欲确定哪个假设正确,请完善下面的设计方案:
实验步骤:将上述蓝色花进行______处理,让其自交.将自交所结种子种植后,分析其性状表现.
结果分析:
若______,则假设一正确;若______,则假设二正确.
正确答案
解:(1)由图可知,基因通过控制酶的合成来控制代谢过程,进而控制生物性状;而囊性纤维病是基因控制蛋白质的合成来直接控制生物性状的.
(2)基因型为AaBbDd的植株自交,则理论上子代中白花植株所占比例为×
=
,根据题意分析已知紫花的基因型是aaB_dd或____D_,所以子代中纯合紫花植株的基因型有aaBBdd、aabbDD、aaBBDD、AAbbDD、AABBDD共5种.
(3)育种工作者将某白花植株(A___dd)与红花植株(aabbdd)杂交,其后代的表现型及其比例为白花(Aa_bdd):紫花(aaBbdd):红花(aabbdd)=2:1:1,则该白花植株的基因型是AaBbdd.
(4)第(3)问中子代紫花植株的基因型为aaBbdd,其植株上有开蓝色花的枝条,其它花为紫色花.该蓝花枝条产生的两种假设为:假设一:诱变产生一个新的显性基因(E),能够把白色前体物转化为蓝色素,在变异植株中紫色素仍能产生,只是被蓝色掩盖.假设二:图中基因B发生了突变,转变为决定蓝色素合成的基因.
实验步骤:这种植物既可自花传粉,也可异花传粉,要让其进行自交,应将上述蓝色花进行套袋处理,让其自交.将自交所结种子种植后,分析其性状表现.
结果分析:若假设一正确,则其基因型为aaBbddE_,子代红色、紫色、蓝色都有(蓝色:紫色:红色=12:3:1)出现;若假设二正确,则其基因型为aa_bdd,子代只有红色和蓝色(蓝色:红色=3:1),没有紫色出现.
故答案为:
(1)不相同
(2) 5
(3)aabbdd AaBbdd
(4)套袋 蓝色:紫色:红色=12:3:1(红色、紫色和蓝色都有出现) 蓝色:红色=3:1(只有红色和蓝色,没有紫色出现)
解析
解:(1)由图可知,基因通过控制酶的合成来控制代谢过程,进而控制生物性状;而囊性纤维病是基因控制蛋白质的合成来直接控制生物性状的.
(2)基因型为AaBbDd的植株自交,则理论上子代中白花植株所占比例为×
=
,根据题意分析已知紫花的基因型是aaB_dd或____D_,所以子代中纯合紫花植株的基因型有aaBBdd、aabbDD、aaBBDD、AAbbDD、AABBDD共5种.
(3)育种工作者将某白花植株(A___dd)与红花植株(aabbdd)杂交,其后代的表现型及其比例为白花(Aa_bdd):紫花(aaBbdd):红花(aabbdd)=2:1:1,则该白花植株的基因型是AaBbdd.
(4)第(3)问中子代紫花植株的基因型为aaBbdd,其植株上有开蓝色花的枝条,其它花为紫色花.该蓝花枝条产生的两种假设为:假设一:诱变产生一个新的显性基因(E),能够把白色前体物转化为蓝色素,在变异植株中紫色素仍能产生,只是被蓝色掩盖.假设二:图中基因B发生了突变,转变为决定蓝色素合成的基因.
实验步骤:这种植物既可自花传粉,也可异花传粉,要让其进行自交,应将上述蓝色花进行套袋处理,让其自交.将自交所结种子种植后,分析其性状表现.
结果分析:若假设一正确,则其基因型为aaBbddE_,子代红色、紫色、蓝色都有(蓝色:紫色:红色=12:3:1)出现;若假设二正确,则其基因型为aa_bdd,子代只有红色和蓝色(蓝色:红色=3:1),没有紫色出现.
故答案为:
(1)不相同
(2) 5
(3)aabbdd AaBbdd
(4)套袋 蓝色:紫色:红色=12:3:1(红色、紫色和蓝色都有出现) 蓝色:红色=3:1(只有红色和蓝色,没有紫色出现)
矮牵牛的花瓣中存在黄色、红色和蓝色3中色素,3中色素的合成途径如下图所示,3对等位基因独立遗传.当酶B存在时,黄色素几乎全部转化为红色素;红色素和蓝色素共存时呈紫色;黄色素与蓝色素共存时呈绿色;没有这3种色素时呈白色.请回答:
(1)基因A指导酶A合成的过程包括转录和______过程,当______酶与基因的启动部位结合时转录开始.
(2)现有纯种白花品系(甲)与另一纯种红花品系(乙)杂交,F1全为红花,F1自交产生F2,且F2中有黄花品系.则甲的基因型是______,乙的基因型是______,F2的表现型及比例为______.
(3)蓝花矮牵牛品系最受市场青睐,现有下列三种纯合亲本:AAbbee(黄花)、aabbee(白花)、AAbbEE(绿花).请设计一个杂交育种方案,从F2中得到蓝色矮牵牛.(用遗传图解表述,配子不作要求).______
(4)科学家把外源基因导入原生质体后,再通过______
技术,培育出了橙色花的矮牵牛.在制备原生质体时用的是______酶,常在酶的混合液中加入一定难度的甘露醇来提高渗透压,以利于获得完整的原生质体.
正确答案
解:(1)基因指导蛋白质的合成包括转录和翻译两个过程,启动子是RNA聚合酶的结合位点.
(2)白色为aa__ee,红色为A_B_ee,甲和乙都是纯种,所以乙是AABBee,又因为甲与乙杂交子代全为红色(A_B_ee),且F2中有黄花品系(A_bbee),所以甲为aabbee.所以F1为AaBbee,F1自交获得F2,F2的表现型红花(A_B_ee):黄花(A_bbee):白花(aaB_ee+aabbee)=9:3:(3+1)=9:3:4.
(3)给出的亲本为AAbbee(黄花)、aabbee(白花)、AAbbEE(绿花),而蓝花基因型为aa___E_,所以可选绿花与白花杂交获得F1,F1自交子代可出现蓝花.
(4)植物细胞制备原生质体时通常用纤维素酶和果胶酶去掉外面的细胞壁,将原生质体培养成个体需要利用植物组织培养技术.
故答案为:
(1)翻译 RNA聚合(酶)
(2)aabbee AABBee 红花:黄花:白花=9:3:4
(3)
(4)原生质体培养(植物组织培养) 纤维素酶和果胶酶
解析
解:(1)基因指导蛋白质的合成包括转录和翻译两个过程,启动子是RNA聚合酶的结合位点.
(2)白色为aa__ee,红色为A_B_ee,甲和乙都是纯种,所以乙是AABBee,又因为甲与乙杂交子代全为红色(A_B_ee),且F2中有黄花品系(A_bbee),所以甲为aabbee.所以F1为AaBbee,F1自交获得F2,F2的表现型红花(A_B_ee):黄花(A_bbee):白花(aaB_ee+aabbee)=9:3:(3+1)=9:3:4.
(3)给出的亲本为AAbbee(黄花)、aabbee(白花)、AAbbEE(绿花),而蓝花基因型为aa___E_,所以可选绿花与白花杂交获得F1,F1自交子代可出现蓝花.
(4)植物细胞制备原生质体时通常用纤维素酶和果胶酶去掉外面的细胞壁,将原生质体培养成个体需要利用植物组织培养技术.
故答案为:
(1)翻译 RNA聚合(酶)
(2)aabbee AABBee 红花:黄花:白花=9:3:4
(3)
(4)原生质体培养(植物组织培养) 纤维素酶和果胶酶
为了研究果蝇眼色(由基因E、e控制)和翅形(由基因B、b控制)的遗传规律,科研工作者以紫眼卷翅、赤眼卷翅、赤眼长翅(野生型)三个不同品系的果蝇为材料,进行杂交实验,结果如下.请分析回答:
(1)由实验一可推测出翅形中显性性状是______.F1卷翅自交后代中,卷翅与长翅比例接近2:1的原因最可能是______.对F1赤眼卷翅个体进行测交,其后代性状分离比为______.
(2)实验二中Fl赤眼卷翅的基因型是______.F2赤眼长翅自交所得F3表现型比例是______.
(3)另一些研究者在解释以上果蝇翅形的遗传现象时提出,紫眼卷翅品系和赤眼卷翅品系果蝇在卷翅基因(B)所在染色体上存在隐性致死基因(d),该基因纯合致死.
①研究者指出,紫眼卷翅品系和赤眼卷翅品系隐性致死基因不同(分别用d1和d2表示),它们在染色体上的位置如图所示.其中d1d1和d2d2致死,d1d2不致死,d1和d2______(属于,不属于)等位基因,理由是______.
②若以上假设成立,则紫眼卷翅品系和赤眼卷翅品系杂交,后代卷翅与长翅的比例为______.
正确答案
解:(1)由实验一中F1赤眼卷翅自交,F2有赤眼卷翅和赤眼长翅,出现性状分离,可推测出翅形中显性性状是卷翅.F1卷翅自交后代中,卷翅与长翅比例接近2:1的原因最可能是卷翅纯合子为致死个体.对F1赤眼卷翅EEBb个体进行测交,其后代性状分离比为赤眼卷翅:赤眼长翅=1:1.
(2)实验二的F1赤眼卷翅自交,F2有四种表现型,说明F1的赤眼卷翅的基因型为EeBb.F1赤眼卷翅自交后代的表现型及比例应为赤眼卷翅(E_B_):赤眼长翅(E_bb):紫眼卷翅(eeB_):紫眼长翅(eebb)=9:3:3:1,但由于基因型为BB的卷翅个体致死,即F2中1EEBB、2EeBB、1eeBB个体死亡,因此,F1赤眼卷翅自交所得F2表现型比例是6:3:2:1.F2赤眼长翅(E_bb)自交所得F3表现型比例是:赤眼长翅(+
):紫眼长翅(
)=5:1.
(3)①图中d1、d2在一对同源染色体的不同位置上,不属于等位基因.
②若紫眼卷翅品系(Bbd1)和赤眼卷翅品系(Bbd2)杂交,由于B和d基因在同一条染色体上,其遗传遵循基因的分离定律,所以(紫眼)卷翅品系(Bbd1)产生的配子是Bd1:b=1:1,(赤眼)卷翅品系(Bbd2)产生的配子是Bd2:b=1:1,雌雄配子随机结合,由于d1d1和d2d2致死,d1d2不致死,则后代卷翅(BBd1d2、Bbd1、Bbd2)与长翅(bb)的比例为3:1.
故答案为:
(1)卷翅 卷翅纯合子为致死个体 赤眼卷翅:赤眼长翅=1:1
(2)EeBb 5:1
(3)①不属于 d1d2不是位于一对同源染色体的同一位置上 ②3:1
解析
解:(1)由实验一中F1赤眼卷翅自交,F2有赤眼卷翅和赤眼长翅,出现性状分离,可推测出翅形中显性性状是卷翅.F1卷翅自交后代中,卷翅与长翅比例接近2:1的原因最可能是卷翅纯合子为致死个体.对F1赤眼卷翅EEBb个体进行测交,其后代性状分离比为赤眼卷翅:赤眼长翅=1:1.
(2)实验二的F1赤眼卷翅自交,F2有四种表现型,说明F1的赤眼卷翅的基因型为EeBb.F1赤眼卷翅自交后代的表现型及比例应为赤眼卷翅(E_B_):赤眼长翅(E_bb):紫眼卷翅(eeB_):紫眼长翅(eebb)=9:3:3:1,但由于基因型为BB的卷翅个体致死,即F2中1EEBB、2EeBB、1eeBB个体死亡,因此,F1赤眼卷翅自交所得F2表现型比例是6:3:2:1.F2赤眼长翅(E_bb)自交所得F3表现型比例是:赤眼长翅(+
):紫眼长翅(
)=5:1.
(3)①图中d1、d2在一对同源染色体的不同位置上,不属于等位基因.
②若紫眼卷翅品系(Bbd1)和赤眼卷翅品系(Bbd2)杂交,由于B和d基因在同一条染色体上,其遗传遵循基因的分离定律,所以(紫眼)卷翅品系(Bbd1)产生的配子是Bd1:b=1:1,(赤眼)卷翅品系(Bbd2)产生的配子是Bd2:b=1:1,雌雄配子随机结合,由于d1d1和d2d2致死,d1d2不致死,则后代卷翅(BBd1d2、Bbd1、Bbd2)与长翅(bb)的比例为3:1.
故答案为:
(1)卷翅 卷翅纯合子为致死个体 赤眼卷翅:赤眼长翅=1:1
(2)EeBb 5:1
(3)①不属于 d1d2不是位于一对同源染色体的同一位置上 ②3:1
某二倍体植物的花色由位于三对同源染色体上的三对等位基因(Aa、Bb、Dd)控制,研究发现体细胞中的d基因数多于D基因时,D基因不能表达,且A基因对B基因表达有抑制作用如图1.某黄色突变体细胞基因型与其可能的染色体组成如图2所示(其他染色体与基因均正常,产生的各种配子正常存活).
(1)根据图1,正常情况下,黄花性状的可能基因型有:______.
(2)基因型为AAbbdd的白花植株和纯合黄花植株杂交,F2植株的表现型及比例为______,F2白花中纯合子的比例为______.
(3)图2中,乙、丙的变异类型分别是______;基因型为aaBbDdd的突变体花色为______.
(4)为了确定aaBbDdd植株属于图乙中的哪一种突变体,设计以下实验.
实验步骤:让该突变体与基因型为aaBBDD的植株杂交,观察并统计子代的表现型与比侧.
结果预测:
Ⅰ若子代中______,则其为突变体甲;
Ⅱ若子代中黄色:橙红色=1:5,则其为突变体乙;
Ⅲ若子代中黄色:橙红色=1:1,则其为突变体丙.
请写出Ⅲ的遗传图解.
______.
正确答案
解:(1)根据题意和图示分析可知:正常情况下,黄花性状的可能基因型有aaBBdd和aaBbdd两种.
(2)基因型为AAbbdd的白花植株和纯合黄花植株aaBBdd杂交,F1植株的基因型为AaBbdd,所以F2植株的表现型及比例为白花:黄花=13:3,F2白花中纯合子(AABBdd、AAbbdd、aabbdd)的比例为.
(3)图2中,乙、丙的变异类型分别是染色体数目变异、染色体结构变异;基因型为aaBbDdd的突变体花色为黄色.
(4)让突变体aaBbDdd与基因型为aaBBDD的植株杂交,若子代中黄色:橙红色=1:3,则其为突变体甲;若子代中黄色:橙红色=1:5,则其为突变体乙;若子代中黄色:橙红色=1:1,则其为突变体丙.
故答案为:
(1)aaBBdd、aaBbdd
(2)白花:黄花=13:3
(3)染色体数目变异、染色体结构变异 黄色
(4)黄色:橙红色=1:3
解析
解:(1)根据题意和图示分析可知:正常情况下,黄花性状的可能基因型有aaBBdd和aaBbdd两种.
(2)基因型为AAbbdd的白花植株和纯合黄花植株aaBBdd杂交,F1植株的基因型为AaBbdd,所以F2植株的表现型及比例为白花:黄花=13:3,F2白花中纯合子(AABBdd、AAbbdd、aabbdd)的比例为.
(3)图2中,乙、丙的变异类型分别是染色体数目变异、染色体结构变异;基因型为aaBbDdd的突变体花色为黄色.
(4)让突变体aaBbDdd与基因型为aaBBDD的植株杂交,若子代中黄色:橙红色=1:3,则其为突变体甲;若子代中黄色:橙红色=1:5,则其为突变体乙;若子代中黄色:橙红色=1:1,则其为突变体丙.
故答案为:
(1)aaBBdd、aaBbdd
(2)白花:黄花=13:3
(3)染色体数目变异、染色体结构变异 黄色
(4)黄色:橙红色=1:3
一种长尾小鹦鹉的羽毛颜色有绿色、蓝色、黄色和白色四种,由两对等位基因控制.已知只有显性基因B时羽毛为蓝色,只有显性基因Y时羽毛为黄色,当显性基因B和Y同时存在时羽毛为绿色,当显性基因B和Y都不存在时,颜色为白色.现有甲、乙、丙、丁四只小鹦鹉,甲、乙、丙均为绿色,丁为黄色,其中甲、乙为雄性,丙、丁为雌性.现将雌雄鹦鹉进行杂交,结果如下表所示.请分析并回答:
(1)控制小鹦鹉羽毛颜色的两对基因的遗传______(填“符合”或“不符合”)自由组合规律.
(2)甲、乙、丙、丁的基因型依次是______.
(3)杂交组合三中F1代能稳定遗传的占______,该组合中F1代绿色小鹦鹉的基因型为______,杂交组合二中F1代绿色小鹦鹉的基因型有______种,其中不同于亲本基因型的概率为______.
(4)若利用一次杂交实验就能判断出杂交组合一的F1代黄色小鹦鹉的基因型,则应选择组合三中F1代白色异性小鹦鹉与该黄色小鹦鹉交配,若______,则该黄色小鹦鹉为纯合子;若______,则该黄色小鹦鹉为杂合子.
正确答案
解:(1)根据题意可知,控制小鹦鹉羽毛颜色的两对基因的遗传符合自由组合规律.
(2)由以上分析可知,甲、乙、丙和丁的基因型依次为BbYy、BBYy、BbYY、bbYy.
(3)杂交组合三的亲本为甲(BbYy)×丁(bbYy),F1代能稳定遗传的占×
;当显性基因B和Y同时存在时羽毛为绿色,因此该组合中F1代绿色小鹦鹉的基因型BbYY、BbYy.杂交组合二的亲本为乙(BBYy)×丙(BbYY),F1代绿色小鹦鹉的基因型有4种,即BBYY、BBYy、BbYY、BbYy,其中不同于亲本基因型(BBYY、BbYy)的概率为
×
+
×
=
.
(4)若利用一次杂交实验就能判断出杂交组合一的F1代黄色小鹦鹉(bbY_)的基因型,则应选择组合三中F1代白色异性小鹦鹉(bbyy)与该黄色小鹦鹉(bbY_)交配,若后代全为黄色(bbY_),则该黄色小鹦鹉为纯合子;若后代中出现了白色(bbyy)(或后代中既有黄色又有白色),则该黄色小鹦鹉为杂合子.
故答案为:
(1)符合
(2)BbYy BBYy BbYY bbYy
(3)BbYY、BbYy 4
(4)后代全为黄色 后代中出现了白色(或后代中既有黄色又有白色)
解析
解:(1)根据题意可知,控制小鹦鹉羽毛颜色的两对基因的遗传符合自由组合规律.
(2)由以上分析可知,甲、乙、丙和丁的基因型依次为BbYy、BBYy、BbYY、bbYy.
(3)杂交组合三的亲本为甲(BbYy)×丁(bbYy),F1代能稳定遗传的占×
;当显性基因B和Y同时存在时羽毛为绿色,因此该组合中F1代绿色小鹦鹉的基因型BbYY、BbYy.杂交组合二的亲本为乙(BBYy)×丙(BbYY),F1代绿色小鹦鹉的基因型有4种,即BBYY、BBYy、BbYY、BbYy,其中不同于亲本基因型(BBYY、BbYy)的概率为
×
+
×
=
.
(4)若利用一次杂交实验就能判断出杂交组合一的F1代黄色小鹦鹉(bbY_)的基因型,则应选择组合三中F1代白色异性小鹦鹉(bbyy)与该黄色小鹦鹉(bbY_)交配,若后代全为黄色(bbY_),则该黄色小鹦鹉为纯合子;若后代中出现了白色(bbyy)(或后代中既有黄色又有白色),则该黄色小鹦鹉为杂合子.
故答案为:
(1)符合
(2)BbYy BBYy BbYY bbYy
(3)BbYY、BbYy 4
(4)后代全为黄色 后代中出现了白色(或后代中既有黄色又有白色)
(2015秋•衡水校级月考)某植物种子的子叶有黄色和绿色两种,由两对基因控制,现有两个绿色子叶的种子X、Y,种植后分别与纯合的黄色子叶植株进行杂交获得大量种子(F1),子叶全部为黄色,然后再进行如下实验:(相关基因用M、m和N、n表示)
I:X的F1全部与基因型为mmnn的个体相交,所得后代性状及比例为:黄色:绿色=3:5
II.Y的F1全部自花传粉,所得后代性状及比例为:黄色:绿色=9:7
请回答下列问题:
(1)Y的基因型为______,X的基因型为______.
(2)纯合的绿色子叶个体的基因型有______种;若让Y的F1与基因型为mmnn的个体相交,其后代的性状及比例为______.
(3)遗传学家在研究该植物减数分裂时,发现处于某一时期的细胞(仅研究两对染色体),大多数如图1所示,少数出现了如图2所示的“十字形”图象.(注:图中每条染色体只表示了一条染色单体)
①图1所示细胞处于______期,图2中发生的变异是______.
②图1所示细胞能产生的配子基因型有______种.研究发现,该植物配子中出现因缺失时不能存活,若不考虑交叉互换,则图2所示细胞产生的配子基因型有______种.
正确答案
解:(1)绿色与纯合的黄色子叶植株进行杂交,F1全部为黄色,说明黄色相对于绿色是显性性状.Y的F1全部自花传粉,所得后代性状及比例为黄:绿=9:7,9:7是9:3:3:1的变式,说明Y的F1的基因型为MmNn,且M和N同时存在时表现为黄色,其他情况均为绿色,则亲本中纯合黄色子叶植株的基因型为MMNN,Y的基因型为mmnn.纯合黄色子叶植株(MMNN)与绿色植株X杂交,所得F1全部为黄色植株(M_N_),F1(M_N_)与基因型为mmnn的个体相交,所得后代性状及比例为黄色:绿色=3:5,即其中黄色植株占3/8,则X基因型为Mmnn或mmNn.
(2)纯合的绿色子叶个体的基因型有3种,即MMnn、mmNN、mmnn;若让Y的F1(MmNn)与基因型为mmnn的个体相交,其后代的基因型及比例为MmNn(黄色):mmNn(绿色):Mmnn(绿色):mmnn(绿色)=1:1:1:1,可见后代的表现型及比例为黄色:绿色=1:3.
(3)①图1所示细胞中的染色体正在联会,处于减数第一次分裂前期(四分体时期);图2中非同源染色体之间发生交叉互换,属于染色体结构变异(或易位).
②由于减数第一次分裂后期,同源染色体分离,非同源染色体自由组合,所以图1所示细胞能产生的配子基因型有4种,即ABEF、AbeF、ABeF、AbEF.若该植物配子中出现基因缺失时不能存活(若不考虑交叉互换),则图2所示细胞产生的配子因型有2种,即ABEF、AbeF.
故答案为:
(1)mmnn Mmnn或mmNn
(2)3 黄色:绿色=1:3
(3)①减数第一次分裂前 染色体结构变异(或易位)
②4 ABEF、AbeF
解析
解:(1)绿色与纯合的黄色子叶植株进行杂交,F1全部为黄色,说明黄色相对于绿色是显性性状.Y的F1全部自花传粉,所得后代性状及比例为黄:绿=9:7,9:7是9:3:3:1的变式,说明Y的F1的基因型为MmNn,且M和N同时存在时表现为黄色,其他情况均为绿色,则亲本中纯合黄色子叶植株的基因型为MMNN,Y的基因型为mmnn.纯合黄色子叶植株(MMNN)与绿色植株X杂交,所得F1全部为黄色植株(M_N_),F1(M_N_)与基因型为mmnn的个体相交,所得后代性状及比例为黄色:绿色=3:5,即其中黄色植株占3/8,则X基因型为Mmnn或mmNn.
(2)纯合的绿色子叶个体的基因型有3种,即MMnn、mmNN、mmnn;若让Y的F1(MmNn)与基因型为mmnn的个体相交,其后代的基因型及比例为MmNn(黄色):mmNn(绿色):Mmnn(绿色):mmnn(绿色)=1:1:1:1,可见后代的表现型及比例为黄色:绿色=1:3.
(3)①图1所示细胞中的染色体正在联会,处于减数第一次分裂前期(四分体时期);图2中非同源染色体之间发生交叉互换,属于染色体结构变异(或易位).
②由于减数第一次分裂后期,同源染色体分离,非同源染色体自由组合,所以图1所示细胞能产生的配子基因型有4种,即ABEF、AbeF、ABeF、AbEF.若该植物配子中出现基因缺失时不能存活(若不考虑交叉互换),则图2所示细胞产生的配子因型有2种,即ABEF、AbeF.
故答案为:
(1)mmnn Mmnn或mmNn
(2)3 黄色:绿色=1:3
(3)①减数第一次分裂前 染色体结构变异(或易位)
②4 ABEF、AbeF
图A、B和C分别表示某雌雄异株植物M的花色遗传、花瓣中色素的控制过程及性染色体简图.植物M的花色(白色、蓝色和紫色)是由常染色体上两对独立遗传的等位基因(A和a、B和b)控制、叶型(宽叶和窄叶)由另一对等位基因(D和d)控制,请据图回答下列问题:
(1)F2中白花的基因型是______,结合A、B两图可判断图A甲、乙两种植株的基因型分别是______和______.
(2)图B中的基因是通过控制______,从而控制该植物的花色性状.
(3)在植物M种群中,基因型AaBb和Aabb的植株的花色分别为______、______,若以这两种基因型的植株作亲本,杂交后产生的子一代的表现型及比例为______.
(4)植物M的XY染色体既有同源部分(图中的Ⅰ片段),又有非同源部分(图中的Ⅱ、Ⅲ片段),若控制叶型的基因位于图C中的Ⅰ片段,宽叶(D)对窄叶(d)为显性,则该基因在雌株和雄株的体细胞中是否均成对存在?______.现有宽叶雄性植株,其则基因型为______.若宽叶雄性各种基因型植株比例相同,则宽叶雄性与窄叶雌性交配后代中窄叶占总数的______.
正确答案
解:(1)分析表格中图B可知,有A基因无B基因时,花色为蓝色,基因型可表示为A_bb,则紫色花可表示为A_B_,因此白色花的基因型有:aabb、aaB_.因F1自交后代为9:3:4,推知F1的基因型为AaBb,所以亲代蓝花的基因型为AAbb,白花的基因型为aaBB;则F2中白花的基因型是aaBB或aaBb或aabb.
(2)基因控制生物的性状是通过控制蛋白质的合成直接控制或通过控制酶的合成来控制细胞的代谢过程.从图中可以看出花色的控制属于第二种,即基因通过控制酶的合成来控制代谢过程从而控制该植物的花色的性状.
(3)以AaBb(紫色)和Aabb(蓝色)两种基因型的植株做亲本,杂交后产生的子一代的基因型为1AABb、2AaBb、1aaBb、1AAbb、2Aabb、1aabb,其中1AABb、2AaBb为紫色花,1AAbb、2Aabb为蓝色花,1aaBb、1aabb为白花色;所以表现型及比例为紫色:蓝色:白色=3:3:2.
(4)图中看出,I片段为XY染色体的同源区段,而控制叶型的基因位于图C中的Ⅰ片段,因此该基因在雌株和雄株的体细胞中均成对存在.现有宽叶雄性植株,其则基因型为.若宽叶雄性各种基因型植株比例相同,即XDYD:XDYd:XdYD,则雄株产生的精子种类有XD:Xd:YD:Yd,其比例为2:1:2:1,该宽叶雄性与窄叶雌性(XdXd)交配,后代中窄叶(XdXd、XdYd)占总数的.
故答案为:
(1)aaBB或aaBb或aabb AAbb aaBB
(2)酶的合成来控制代谢
(3)紫色、蓝色; 紫色:蓝色:白色=3:3:2
(5)是 XDYD、XDYd、XdYD
解析
解:(1)分析表格中图B可知,有A基因无B基因时,花色为蓝色,基因型可表示为A_bb,则紫色花可表示为A_B_,因此白色花的基因型有:aabb、aaB_.因F1自交后代为9:3:4,推知F1的基因型为AaBb,所以亲代蓝花的基因型为AAbb,白花的基因型为aaBB;则F2中白花的基因型是aaBB或aaBb或aabb.
(2)基因控制生物的性状是通过控制蛋白质的合成直接控制或通过控制酶的合成来控制细胞的代谢过程.从图中可以看出花色的控制属于第二种,即基因通过控制酶的合成来控制代谢过程从而控制该植物的花色的性状.
(3)以AaBb(紫色)和Aabb(蓝色)两种基因型的植株做亲本,杂交后产生的子一代的基因型为1AABb、2AaBb、1aaBb、1AAbb、2Aabb、1aabb,其中1AABb、2AaBb为紫色花,1AAbb、2Aabb为蓝色花,1aaBb、1aabb为白花色;所以表现型及比例为紫色:蓝色:白色=3:3:2.
(4)图中看出,I片段为XY染色体的同源区段,而控制叶型的基因位于图C中的Ⅰ片段,因此该基因在雌株和雄株的体细胞中均成对存在.现有宽叶雄性植株,其则基因型为.若宽叶雄性各种基因型植株比例相同,即XDYD:XDYd:XdYD,则雄株产生的精子种类有XD:Xd:YD:Yd,其比例为2:1:2:1,该宽叶雄性与窄叶雌性(XdXd)交配,后代中窄叶(XdXd、XdYd)占总数的.
故答案为:
(1)aaBB或aaBb或aabb AAbb aaBB
(2)酶的合成来控制代谢
(3)紫色、蓝色; 紫色:蓝色:白色=3:3:2
(5)是 XDYD、XDYd、XdYD
扫码查看完整答案与解析