- 孟德尔的豌豆杂交实验(二)
- 共13438题
许多动物的毛色是基因间上位显性的结果.拉布拉多猎狗的毛色受两对基因的控制.黑狗是因为毛皮中有黑色素 沉积,若毛皮中无黑色素将呈现黄色,褐色狗是因为色素的深度较浅.毛色和基因型的对应关系如下表:
(1)E与e、B与b称为等位基因,这两对基因有可能在同一对同源染色体上,也可能在两对同源染色体上,请.在图中补全可能的类型(用竖线表示染色体.,黑点表示基因在染色体上的位点)
由题意可知;四种基因中决定毛皮中有黒色素沉积的基因是______
(2)经研究证实两对基因的遗传符合基因的自由组合定律,现有一对黑狗和黄狗多次杂交(产生了较多的子代),F,的表现型和比例为:黑色:褐色:黄色=1:1:2.
则这种杂交方式在遗传学上称为______,属于假说一演绎法的______阶段.让F1中雌雄黑狗进行交配,在子代的黄狗中纯合子占______^
(3)若一个基因型为EeBb的精原细胞减数分裂产生的精子为Eb,则另外三个精子的基因组成为______.
(4)科学家在研究动物毛色时发现,北极狐的毛色在冬季几乎为白色,到夏关,毛色逐渐变深呈红褐色.为验证北极狐毛色变化是受温度影响还是受日照长短影响,研究人员将20只白色北极狐均分为四组做了如下实验:
①除上述条件外,实验中的其他条件均相同且适宜,这是为了遵循实验的单一变量原则.实验中设置了两个自变量,分别是______
②研究人员的实验结果是1、3组毛色不变,2、4 组毛色变深,说明影响毛色变化的外界因素是______该实验还说明了生物的表现型是基因型和______共同作用的结果.
③进一步的研究表明,热敏感基因控制着这一变化.请从基因控制性状及代谢的角度分析出现上述实验现 象的原因______.
正确答案
解:(1)由表格中的基因型可知,当有E基因存在的时候,毛皮才有色彩,综合从题中的描述,决定毛皮中有黒色素沉积的基因是E.
(2)两对等位基因的遗传,一对黑狗(EeBb)和黄狗(eebb),F1的表现型和比例为:黑色(EeBb):褐色(Eebb):黄色(eeBb、eebb)=1:1:2,总共4份,只有测交才能出现这样的结果.“假说一演绎法”是现代科学研究中常用的方法,包括“提出问题一做出假设一演绎推理一检验推理一得出结论”五个基本环节,孟德尔利用该方法发现了两大遗传规律,测交属于验证阶段.让F1中雌雄黑狗(EeBb)进行交配,在子代的黄狗中基因型为(eeBB、
eeBb、
eebb),其中纯合子占(
eeBB+
eebb )÷(
eeBB+
eeBb+
eebb)=
.
(3)一个细胞减数分裂可以形成四个细胞,若一个基因型为EeBb的精原细胞减数分裂时,同源染色体(或者等位基因)分离,即E和e分离,B和b分离;非同源染色体(或者非等位基因)自由组合,即E和(B、b),e和(B、b);当产生的精子为Eb,则另外三个精子的基因组成只能为Eb、eB、eB.
(4)①从实验中看出来,除上述条件外,实验中的其他条件均相同且适宜,这是为了遵循实验的单一变量原则.实验中设置了两个自变量,分别是温度、日照长短.
②研究人员的实验结果是1、3组毛色不变,2、4 组毛色变深,1、3组温度为0℃,2、4 组温度为30℃,说明影响毛色变化的外界因素是温度;该实验还说明了生物的表现型是基因型和环境共同作用的结果,表现型=基因型+环境.
③黑狗和褐色狗是因为毛皮中有色素沉积程度不同,基因控制性状的方式有两种:一种基因直接控制蛋白质的合成来控制生物性状,另一种基因通过控制酶的合成来直接控制生物性状;从基因控制性状及代谢的角度分析出现上述实验现象的原因是热敏感基因控制合成黑色素酶,黑色素酶的活性受温度影响.
故答案为:
(1) E
(2)测交 验证
(3)Eb、eB、eB
(4)①温度、日照长短
②温度 环境(环境因素)
③热敏感基因控制合成黑色素酶,黑色素酶的活性受温度影响
解析
解:(1)由表格中的基因型可知,当有E基因存在的时候,毛皮才有色彩,综合从题中的描述,决定毛皮中有黒色素沉积的基因是E.
(2)两对等位基因的遗传,一对黑狗(EeBb)和黄狗(eebb),F1的表现型和比例为:黑色(EeBb):褐色(Eebb):黄色(eeBb、eebb)=1:1:2,总共4份,只有测交才能出现这样的结果.“假说一演绎法”是现代科学研究中常用的方法,包括“提出问题一做出假设一演绎推理一检验推理一得出结论”五个基本环节,孟德尔利用该方法发现了两大遗传规律,测交属于验证阶段.让F1中雌雄黑狗(EeBb)进行交配,在子代的黄狗中基因型为(eeBB、
eeBb、
eebb),其中纯合子占(
eeBB+
eebb )÷(
eeBB+
eeBb+
eebb)=
.
(3)一个细胞减数分裂可以形成四个细胞,若一个基因型为EeBb的精原细胞减数分裂时,同源染色体(或者等位基因)分离,即E和e分离,B和b分离;非同源染色体(或者非等位基因)自由组合,即E和(B、b),e和(B、b);当产生的精子为Eb,则另外三个精子的基因组成只能为Eb、eB、eB.
(4)①从实验中看出来,除上述条件外,实验中的其他条件均相同且适宜,这是为了遵循实验的单一变量原则.实验中设置了两个自变量,分别是温度、日照长短.
②研究人员的实验结果是1、3组毛色不变,2、4 组毛色变深,1、3组温度为0℃,2、4 组温度为30℃,说明影响毛色变化的外界因素是温度;该实验还说明了生物的表现型是基因型和环境共同作用的结果,表现型=基因型+环境.
③黑狗和褐色狗是因为毛皮中有色素沉积程度不同,基因控制性状的方式有两种:一种基因直接控制蛋白质的合成来控制生物性状,另一种基因通过控制酶的合成来直接控制生物性状;从基因控制性状及代谢的角度分析出现上述实验现象的原因是热敏感基因控制合成黑色素酶,黑色素酶的活性受温度影响.
故答案为:
(1) E
(2)测交 验证
(3)Eb、eB、eB
(4)①温度、日照长短
②温度 环境(环境因素)
③热敏感基因控制合成黑色素酶,黑色素酶的活性受温度影响
某雌雄同株植物的一对相对性状宽叶和窄叶是由一对等位基因(D和d)控制.现利用宽叶植株甲和窄叶植株乙完成以下实验:
实验1:让宽叶植株甲自交得F1,再从F1中选择宽叶植株继续自交得F2,如此连续自交多代,结果每一代都是既有宽叶又有窄叶植株,且数量比接近1:1.
实验2:取宽叶植株甲和窄叶植株乙进行正反交实验,结果不同.
正交:宽叶甲(♂)×窄叶乙(♀)→窄叶
反交:窄叶乙(♂)×宽叶甲(♀)→窄叶:宽叶=1:1
综合以上实验分析可知:
(1)该种植株叶型的遗传遵循______定律,______为隐性性状.
(2)若取宽叶植株甲的花粉进行单倍体育种,所得后代的表现型为______,因为含有______基因的花粉不可育.
(3)经研究表明,引起雄配子不育是由于该对等位基因所在的染色体发生部分片段缺失所致(正常用+表示,缺失用-表示),但与叶型相关的基因没有丢失.则上述实验1中F1宽叶个体的基因型为______.若实验2中正交试验出现了少数的宽叶子代,可能的原因是宽叶植株甲的小孢子母细胞进行减数分裂时发生了______现象.
(4)科学家将含有抗虫基因的______导入到染色体组成完全正常的杂合植株细胞的染色体DNA中,并培育成转基因宽叶植株,然后在个体水平上采用______方法检测是否具有抗虫特性.若经检测该植株具有抗虫特性,且抗虫基因与叶型基因不在同一条染色体上,让该转基因植株自交产生F1,选取F1中抗病宽叶植株随机授粉,则后代的表现型及比例为______.
正确答案
解:(1)植物的一对相对性状宽叶和窄叶是由一对等位基因(D和d)控制,所以遵循基因的分离定律.由于宽叶植株甲自交后代出现窄叶,所以窄叶为隐性性状.
(2)由于让宽叶植株甲自交得F1,再从F1中选择宽叶植株继续自交得F2,如此连续自交多代,结果每一代都是既有宽叶又有窄叶植株,且数量比接近1:1,说明雄性含D基因的花粉不可育,因此宽叶植株的基因型都是Dd.取宽叶植株甲的花粉进行单倍体育种,所得后代的基因型都是dd,表现型为窄叶.
(3)由于引起雄配子不育是由于该对等位基因所在的染色体发生部分片段缺失所致,而与叶型相关的基因没有丢失,所以发生变异的是基因D,实验1中F1宽叶个体的基因型为D-d+.由于实验2中正交试验:宽叶甲(♂)×窄叶乙(♀)→窄叶,若出现了少数的宽叶子代,可能的原因是宽叶植株甲的小孢子母细胞进行减数分裂时发生了基因突变或交叉互换现象.
(4)科学家将含有抗虫基因的基因表达载体即重组DNA导入到染色体组成完全正常的杂合植株细胞的染色体DNA中,并培育成转基因宽叶植株,然后在个体水平上采用抗虫的接种试验方法检测是否具有抗虫特性.若经检测该植株具有抗虫特性,且抗虫基因与叶型基因不在同一条染色体上.假设抗虫基因用A表示,则该转基因植株的基因型为AaDd,其中自交产生F1,选取F1中抗病宽叶植株(1AADD、2AaDD、2AADd、4AaDd)随机授粉,其中AA:Aa=1:2,A的基因频率为,a的基因频率为
,同理D的基因频率为
,d的基因频率为
,根据遗传平衡定律,AA=DD=
=
、Aa=Dd=2×
、aa=dd=
,因此后的表现型及比例为:抗虫宽叶:抗虫窄叶:不抗虫宽叶:不抗虫窄叶=
:
:
:
=64:8:8:1.
故答案为:
(1)基因分离 窄叶
(2)窄叶 D
(3)D-d+基因突变或交叉互换
(4)基因表达载体 抗虫的接种试验 抗虫宽叶:抗虫窄叶:不抗虫宽叶:不抗虫窄叶=64:8:8:1
解析
解:(1)植物的一对相对性状宽叶和窄叶是由一对等位基因(D和d)控制,所以遵循基因的分离定律.由于宽叶植株甲自交后代出现窄叶,所以窄叶为隐性性状.
(2)由于让宽叶植株甲自交得F1,再从F1中选择宽叶植株继续自交得F2,如此连续自交多代,结果每一代都是既有宽叶又有窄叶植株,且数量比接近1:1,说明雄性含D基因的花粉不可育,因此宽叶植株的基因型都是Dd.取宽叶植株甲的花粉进行单倍体育种,所得后代的基因型都是dd,表现型为窄叶.
(3)由于引起雄配子不育是由于该对等位基因所在的染色体发生部分片段缺失所致,而与叶型相关的基因没有丢失,所以发生变异的是基因D,实验1中F1宽叶个体的基因型为D-d+.由于实验2中正交试验:宽叶甲(♂)×窄叶乙(♀)→窄叶,若出现了少数的宽叶子代,可能的原因是宽叶植株甲的小孢子母细胞进行减数分裂时发生了基因突变或交叉互换现象.
(4)科学家将含有抗虫基因的基因表达载体即重组DNA导入到染色体组成完全正常的杂合植株细胞的染色体DNA中,并培育成转基因宽叶植株,然后在个体水平上采用抗虫的接种试验方法检测是否具有抗虫特性.若经检测该植株具有抗虫特性,且抗虫基因与叶型基因不在同一条染色体上.假设抗虫基因用A表示,则该转基因植株的基因型为AaDd,其中自交产生F1,选取F1中抗病宽叶植株(1AADD、2AaDD、2AADd、4AaDd)随机授粉,其中AA:Aa=1:2,A的基因频率为,a的基因频率为
,同理D的基因频率为
,d的基因频率为
,根据遗传平衡定律,AA=DD=
=
、Aa=Dd=2×
、aa=dd=
,因此后的表现型及比例为:抗虫宽叶:抗虫窄叶:不抗虫宽叶:不抗虫窄叶=
:
:
:
=64:8:8:1.
故答案为:
(1)基因分离 窄叶
(2)窄叶 D
(3)D-d+基因突变或交叉互换
(4)基因表达载体 抗虫的接种试验 抗虫宽叶:抗虫窄叶:不抗虫宽叶:不抗虫窄叶=64:8:8:1
某雌雄同株植物花的颜色由两对基因(A和a,B和b)控制,A基因控制色素的合成(A:出现色素,AA和Aa的效应相同),B为修饰基因,淡化颜色的深度(B:修饰效应出现,BB和Bb的效应不同).其基因型与表现型的对应关系见下表,请回答下列问题:
(1)由于A 基因模板链的互补链部分序列“CTCCGA”中的一个C被T替换,突变为决定终止密码(UAA或UGA或UAG)的序列,导致翻译提前终止.突变后的序列是______.
若A基因在解旋后,其中一条母链上的碱基G会被碱基T所替代,而另一条链正常,则该基因再连续复制n次后,突变成的基因A‘与基因A的比例为______.
(2)为探究两对基因(A和a,B和b)是在同一对同源染色体上,还是在两对同源染色体上,某研究小组选用AaBb粉色植株自交进行探究.
①实验假设:这两对基因在染色体上的位置存在三种类型,请你在下表中补充画出其它两种类型(用横线表示染色体,黑点表示基因在染色体上的位点).
②实验方法:粉色植株自交.
③实验步骤:第一步:粉色植株自交.
第二步:观察并统计子代植株花的颜色和比例.
④实验可能的结果(不考虑交叉互换)及相应的结论:
a若子代植株的花色及比例为______,两对基因在两对同源染色体上符合______类型;
b若子代植株的花色及比例为______,两对基因在一对同源染色体上,符合______类型;
c若子代植株的花色及比例为粉色:红色:白色=2:1:1,两对基因在一对同源染色体上,符合丙类型.
(3)纯合白色植株和纯合红色植株杂交,产生子代植株花全是粉色.则纯合白色植株基因型可能为______.
正确答案
解:(1)由于A 基因模板链的互补链部分序列为CTC CGA,则模板链为GAG GCA,对应的密码子为CUC CGA,若基因模板链的互补链中的一个C被T替换,对应的密码子变为终止密码(UAA或UGA或UAG),可以推知第三个C变为T,突变后的序列为CTC TGA;若A基因在解旋后,其中一条母链上的碱基G会被碱基T所替代,而另一条链正常,由于DNA的复制为半保留复制,模板为亲代DNA的两条链,故复制形成的子代DNA分子,突变基因与正常基因的比例始终为1:1.
(2)①根据题意,A、a与B、b的位置关系有三种情况:位于两对同源染色体上是一种类型,位于同一对同源染色体上有两种类型,一种是A和B基因位于同一条染色体上,另一种是A和b位于同一条染色体上,具体图示见答案.
④a.若两对基因在两对同源染色体上,即符合甲类型,则这两对基因的遗传遵循基因的自由组合定律,所以其能形成四种比例相等的配子(AB、Ab、aB、ab),后代植株花将具有三种花色,粉色(A_Bb):红色(A_bb):白色(A_BB 或aa__)=3/4×1/2:3/4×1/4:(1-3/4×1/2-3/4×1/4)=6:3:7;
b.若两对基因在一对同源染色体上,符合乙种类型,亲本将形成两种比例相等的配子(AB和ab),这两种配子随机组合产生三种基因型后代分别是AABB(白色):AaBb(粉色):aabb(白色)=1:2:1,即粉色:白色=1:1.
(3)白花植株的基因型为A_BB或aa__,共有5种,即AABB、AaBB、aaBB、aaBb、aabb,其中纯合白花为AABB、aaBB和aabb,纯合红花为AAbb,粉色基因型为A_Bb,由于纯合白色植株和纯合红色植株杂交,产生子代植株花全是粉色,则符合题意的纯合白花为AABB或aaBB.
故答案为:
(1)CTC TGA(TGA) 1:1
(2)①
④、a粉色:红色:白色=6;3:7 甲 b、粉色:白色=1:1 乙
(3)AABB或aaBB
解析
解:(1)由于A 基因模板链的互补链部分序列为CTC CGA,则模板链为GAG GCA,对应的密码子为CUC CGA,若基因模板链的互补链中的一个C被T替换,对应的密码子变为终止密码(UAA或UGA或UAG),可以推知第三个C变为T,突变后的序列为CTC TGA;若A基因在解旋后,其中一条母链上的碱基G会被碱基T所替代,而另一条链正常,由于DNA的复制为半保留复制,模板为亲代DNA的两条链,故复制形成的子代DNA分子,突变基因与正常基因的比例始终为1:1.
(2)①根据题意,A、a与B、b的位置关系有三种情况:位于两对同源染色体上是一种类型,位于同一对同源染色体上有两种类型,一种是A和B基因位于同一条染色体上,另一种是A和b位于同一条染色体上,具体图示见答案.
④a.若两对基因在两对同源染色体上,即符合甲类型,则这两对基因的遗传遵循基因的自由组合定律,所以其能形成四种比例相等的配子(AB、Ab、aB、ab),后代植株花将具有三种花色,粉色(A_Bb):红色(A_bb):白色(A_BB 或aa__)=3/4×1/2:3/4×1/4:(1-3/4×1/2-3/4×1/4)=6:3:7;
b.若两对基因在一对同源染色体上,符合乙种类型,亲本将形成两种比例相等的配子(AB和ab),这两种配子随机组合产生三种基因型后代分别是AABB(白色):AaBb(粉色):aabb(白色)=1:2:1,即粉色:白色=1:1.
(3)白花植株的基因型为A_BB或aa__,共有5种,即AABB、AaBB、aaBB、aaBb、aabb,其中纯合白花为AABB、aaBB和aabb,纯合红花为AAbb,粉色基因型为A_Bb,由于纯合白色植株和纯合红色植株杂交,产生子代植株花全是粉色,则符合题意的纯合白花为AABB或aaBB.
故答案为:
(1)CTC TGA(TGA) 1:1
(2)①
④、a粉色:红色:白色=6;3:7 甲 b、粉色:白色=1:1 乙
(3)AABB或aaBB
家猫体色是由两对基因控制的.其中,常染色体上有一基因“W”能抑制颜色的出现,而使家猫表现为白色,另一基因“O”位于X染色体上,而且是中间显性,即Oo为玳瑁猫、OO为斑纹猫、oo为红色猫.
(1)现有一只白色雌猫与一只斑纹雄猫交配,生出的小猫是一只红色雄猫、一只玳瑁雌猫、一只斑纹雌猫、一只白色雄猫、一只白色雌猫.则小猫母亲的基因型为______.
A.WWX°X° B.WwX°X° C.WwX°X° D.WwX°X°
(2)现有一只白色雌猫与一只白色雄猫交配,产下一只红色雌猫和一只斑纹雄猫,则下一只是白色猫的概率是______.每窝产下一只玳瑁雌猫和一只玳瑁雄猫的概率是______.每窝产下一只红色雌猫和一只红色雄猫的概率是______.
(3)假如一对猫交配,其子代中的雄性个体总是红色猫,而子代中的雌性个体总是玳瑁猫,那么,这对猫的颜色和基因型分别是______.
正确答案
解:(1)根据题意可知,白色雌猫的基因型为W_XX,斑纹雄猫的基因型为wwX°Y,它们交配,生出的小猫是一只红色雄猫(wwX°Y)、一只玳瑁雌猫(wwX°X°)、一只斑纹雌猫(wwX°X°)、一只白色雄猫(W_XY)、一只白色雌猫(W_XX).由此可知,亲本中雌猫的基因型为WwX°X°.
(2)现有一只白色雌猫(W_XX)与一只白色雄猫(W_XY)交配,产下一只红色雌猫(wwX°X°)和一只斑纹雄猫(wwX°Y),则亲本的基因型为WwX°X°×WwX°Y,它们再一只是白色猫(W___)的概率是.玳瑁猫只能是雄猫,因此每窝产下一只玳瑁雌猫和一只玳瑁雄猫的概率是0.每窝产下一只红色雌猫(wwX°X°)和一只红色雄猫(wwX°Y)的情况有两种(第一只是红色雌猫,第二种是红色雄猫或第一只是红色雄猫,第二只是红色雌猫),概率是
×
×
×
+
×
×
×
=
.
(3)假如一对猫交配,其子代中的雄性个体总是红色猫(wwX°Y),而子代中的雌性个体总是玳瑁猫(wwX°X°),则根据子代的基因型可知推知,这对猫的颜色和基因型分别是斑纹雄猫(wwX°Y)、红色雌猫(wwX°X°).
故答案为:
(1)C
(2) 0
(3)斑纹雄猫(wwX°Y)、红色雌猫(wwX°X°)
解析
解:(1)根据题意可知,白色雌猫的基因型为W_XX,斑纹雄猫的基因型为wwX°Y,它们交配,生出的小猫是一只红色雄猫(wwX°Y)、一只玳瑁雌猫(wwX°X°)、一只斑纹雌猫(wwX°X°)、一只白色雄猫(W_XY)、一只白色雌猫(W_XX).由此可知,亲本中雌猫的基因型为WwX°X°.
(2)现有一只白色雌猫(W_XX)与一只白色雄猫(W_XY)交配,产下一只红色雌猫(wwX°X°)和一只斑纹雄猫(wwX°Y),则亲本的基因型为WwX°X°×WwX°Y,它们再一只是白色猫(W___)的概率是.玳瑁猫只能是雄猫,因此每窝产下一只玳瑁雌猫和一只玳瑁雄猫的概率是0.每窝产下一只红色雌猫(wwX°X°)和一只红色雄猫(wwX°Y)的情况有两种(第一只是红色雌猫,第二种是红色雄猫或第一只是红色雄猫,第二只是红色雌猫),概率是
×
×
×
+
×
×
×
=
.
(3)假如一对猫交配,其子代中的雄性个体总是红色猫(wwX°Y),而子代中的雌性个体总是玳瑁猫(wwX°X°),则根据子代的基因型可知推知,这对猫的颜色和基因型分别是斑纹雄猫(wwX°Y)、红色雌猫(wwX°X°).
故答案为:
(1)C
(2) 0
(3)斑纹雄猫(wwX°Y)、红色雌猫(wwX°X°)
柴油树是一种单性花、雌雄同株的二倍体植物,其种子榨出的油稍加提炼可作为生物柴油.柴油树的产油途径如下面甲图所示(两对基因自由组合,A对a、B对b为显性).有人设想通过基因工程培育抗病高产的柴油树,其操作过程中的一部分如下面乙图所示.请回答:
(1)在①~④过程中,不需要遵循碱基互补配对原则的步骤有______.
(2)如果选用两种不产油的植株进行杂交,则F1代全部为产油的植株;F1自交产生的F2中,不产油的植株占______.选用F2中某种产油的植株与另一种不产油的植株杂交,所得后代中的3种表现型及比例是,产油类型:中间物质X含量高:既不产油又不含中间物质X=3:3:2,则从F2中选作亲本的植株基因型是______和______.
(3)现有不产油的植株甲(基因型为Aabb)和植株乙(基因型为aaBb),要在最短时间内获得能稳定遗传的产油植株的种子,请你帮助完成下列相关育种设计:
①育种原理:______.
②育种方案设计的思路:根据题中所提供的实验材料,首先需要获得基因型为______的植株.在育种过程中,需要与传统育种方法相结合进行的操作有______,再通过______获得染色体数目加倍的纯合植株.
正确答案
解:(1)在①~④过程中,不需要遵循碱基互补配对原则的步骤有③,即将重组质粒导入受体细胞.
(2)由于基因A和基因B共同决定产油性状,所以F1代全部为产油的植株基因型为AaBb,F1自交产生的F2中,产油的植株:不产油的植株=9:7,所以不产油的植株占.选用F2中某种产油的植株与另一种不产油的植株杂交,由于所得后代中有既不产油又不含中间物质的表现型,所以选用F2中某种产油的植株的基因型只能是AaBb;又(产油类型+中间物质X含量高):既不产油又不含中间物质X=(3+3):2=3:1,所以另一种不产油的植株的基因型是Aabb.
(3)①要在最短时间内获得能稳定遗传的产油植株的种子,需进行单倍体育种,其育种原理是基因重组和染色体变异.
②育种方案为:先通过杂交方式获得基因型为AaBb的植株,再采用花药离体培养的方法获得单倍体植株,最后用秋水仙素处理幼苗,可获得染色体数目加倍的纯合植株.
故答案为:
(1)③
(2) AaBb Aabb
(3)①基因重组和染色体变异
②AaBb 杂交和自交 单倍体育种
解析
解:(1)在①~④过程中,不需要遵循碱基互补配对原则的步骤有③,即将重组质粒导入受体细胞.
(2)由于基因A和基因B共同决定产油性状,所以F1代全部为产油的植株基因型为AaBb,F1自交产生的F2中,产油的植株:不产油的植株=9:7,所以不产油的植株占.选用F2中某种产油的植株与另一种不产油的植株杂交,由于所得后代中有既不产油又不含中间物质的表现型,所以选用F2中某种产油的植株的基因型只能是AaBb;又(产油类型+中间物质X含量高):既不产油又不含中间物质X=(3+3):2=3:1,所以另一种不产油的植株的基因型是Aabb.
(3)①要在最短时间内获得能稳定遗传的产油植株的种子,需进行单倍体育种,其育种原理是基因重组和染色体变异.
②育种方案为:先通过杂交方式获得基因型为AaBb的植株,再采用花药离体培养的方法获得单倍体植株,最后用秋水仙素处理幼苗,可获得染色体数目加倍的纯合植株.
故答案为:
(1)③
(2) AaBb Aabb
(3)①基因重组和染色体变异
②AaBb 杂交和自交 单倍体育种
某生物中有两对等位基因,其中A、a位于第二对同源染色体上,B、b位于第三对同源染色体上.请回答下列问题:
(1)若该生物为小鼠,基因A控制黄色皮毛,基因B控制黑色皮毛.当A和B同时存在时,表现为灰色皮毛;aabb表现为白色皮毛.一个灰色雄鼠和一个黄色雌鼠交配,子一代的表现型及比例为黄色小鼠、
灰色小鼠、
黑色小鼠、
白色小鼠,则亲本的基因型为______.
(2)若该生物体中另一对等位基因D、d也位于第二对同源染色体上,D对d为完全显性.当两对基因位于一对同源染色体上时,假设它们作为一个遗传单位传递下去(即无互换).那么当基因型为的个体自交,则后代中基因型及比例为______.
(3)若该生物为一年生植物,某地区该植物类型均为aa型,某一年洪水冲来了许多AA和Aa的种子,不久群体的基因型频率变为AA 55%、Aa 40%、aa 5%.则该种群植物自交两代后,基因型AA、Aa的频率分别为______和______.若自由交配两代后,基因型AA、Aa的频率分别为______和______.
正确答案
解:(1)一个灰色雄鼠(A_B_)和一个黄色雌鼠(A_bb)交配,子一代有白色小鼠(aabb),可推知父本和母本的基因型分别为AaBb和Aabb.
(2)根据题意可知,两对基因位于一对同源染色体上,遵循连锁规律,则基因型为的个体只能产生两种配子,Ad、aD,其自交后代基因型及比例为AAdd:AaDd:aaDD=1:2:1.
(3)已知群体的基因型频率变为AA55%、Aa40%、aa5%.则该种群植物自交两代后,基因型AA的频率为55%+40%×+40%×
×
=70%,Aa的频率为40%×
=10%.若自由交配,其产生的配子A的频率为55%+40%×
=75%,a的频率为25%,所以自由交配两代后基因型AA=75%×75%=56.25%,Aa=2×75%×25%=37.5%.
故答案为:
(1)AaBb×Aabb
(2)AAdd:AaDd:aaDD=1:2:1
(3)70% 10% 56.25%() 37.5%(
)
解析
解:(1)一个灰色雄鼠(A_B_)和一个黄色雌鼠(A_bb)交配,子一代有白色小鼠(aabb),可推知父本和母本的基因型分别为AaBb和Aabb.
(2)根据题意可知,两对基因位于一对同源染色体上,遵循连锁规律,则基因型为的个体只能产生两种配子,Ad、aD,其自交后代基因型及比例为AAdd:AaDd:aaDD=1:2:1.
(3)已知群体的基因型频率变为AA55%、Aa40%、aa5%.则该种群植物自交两代后,基因型AA的频率为55%+40%×+40%×
×
=70%,Aa的频率为40%×
=10%.若自由交配,其产生的配子A的频率为55%+40%×
=75%,a的频率为25%,所以自由交配两代后基因型AA=75%×75%=56.25%,Aa=2×75%×25%=37.5%.
故答案为:
(1)AaBb×Aabb
(2)AAdd:AaDd:aaDD=1:2:1
(3)70% 10% 56.25%() 37.5%(
)
小麦中光颖和毛颖是一对相对性状(显性基因用T表示),抗锈病和不抗锈病是一对相对性状(显性基因用R表示),两对基因各自独立遗传.现有光颖抗锈病和毛颖不抗锈病个体杂交,F1全为毛颖抗锈病,F1自交,F2出现四种性状:毛颖抗锈病、光颖抗锈病、毛颖不抗锈病、光颖不抗锈病.根据以上信息回答下列问题.
(1)上述遗传符合______定律,其中______和______是显性状性.
(2)F1所产生的配子类型有______,F2中毛颖不抗锈病植株所占比例是______,F2光颖抗锈病植株中能稳定遗传的个体所占比例是______.
(3)F2中要获得TTRR的小麦10株,F2群体理论上至少应有______株.
(4)选F2中光颖不抗锈病植株与毛颖抗锈病双杂合子植株杂交,后代出现光颖抗锈病纯合子的比例是______.
正确答案
解:(1)由于两对基因分别位于两对同源染色体上,所以符合基因的自由组合定律.光颖抗诱病和毛颖不抗锈病杂交,F1代全为毛颖抗锈病,由光颖和毛颖杂交,F1全为毛颖,可知毛颖对光颖为显性;同理抗病对不抗病为显性.
(2)F1的基因型是TtRr,产生的配子类型是TR、Tr、tR、tr. F2中毛颖不抗锈病植株所占比例是×
=
,F2光颖抗锈病植株(ttR_)中能稳定遗传的个体所占比例是
.
(3)已知F1的基因型是TtRr,F2中TTRR的比例是×
=
,所以F2中要获得TTRR的小麦10株,F2群体理论上至少应有10÷
=160株.
(4)选F2中光颖不抗锈病(ttrr)植株与毛颖抗锈病双杂合子(TtRr)植株杂交,后代出现光颖抗锈病纯合子的比例是.
故答案为:
(1)基因的自由组合 毛颖 抗锈病
(2)TR、Tr、tR、tr
(3)160
(4)
解析
解:(1)由于两对基因分别位于两对同源染色体上,所以符合基因的自由组合定律.光颖抗诱病和毛颖不抗锈病杂交,F1代全为毛颖抗锈病,由光颖和毛颖杂交,F1全为毛颖,可知毛颖对光颖为显性;同理抗病对不抗病为显性.
(2)F1的基因型是TtRr,产生的配子类型是TR、Tr、tR、tr. F2中毛颖不抗锈病植株所占比例是×
=
,F2光颖抗锈病植株(ttR_)中能稳定遗传的个体所占比例是
.
(3)已知F1的基因型是TtRr,F2中TTRR的比例是×
=
,所以F2中要获得TTRR的小麦10株,F2群体理论上至少应有10÷
=160株.
(4)选F2中光颖不抗锈病(ttrr)植株与毛颖抗锈病双杂合子(TtRr)植株杂交,后代出现光颖抗锈病纯合子的比例是.
故答案为:
(1)基因的自由组合 毛颖 抗锈病
(2)TR、Tr、tR、tr
(3)160
(4)
以下是以果蝇为材料的一组遗传研究实验,分析并回答.
(1)果蝇受精卵中性染色体组成与其发育形成的成体性别关系如下表:
①由表面知,雄果蝇的形成与受精卵中______染色体的数目密切相关.
②某雄果蝇身体有些体细胞性染色体组成为XX,有些体细胞性染色体组成为XO,这种变异属于______.
(2)纯合灰体长翅与黑体残翅果蝇交配(有关基因均在常染色体上),F1全是灰体长翅,将F1的雌、雄个体分别与黑体残翅果蝇交配,结果如图所示:
①显性性状是______;控制体色与翅型的两对基因在染色体上的位置关系是______.F1雌果蝇与黑体残翅雄果蝇杂交子代中出现灰体残翅和黑体长翅果蝇的原因是______.
②果蝇的体色和目艮色分别由基因A、a和D、d控制,黑体白眼果蝇与灰体红眼果蝇交配,F1中红颜都是雌性,白眼都是雄性,灰体与黑体果蝇都有雄有雌据此可知.亲代中灰体红眼果蝇的基因型是______. F1甲雌雄个体自由交配产生的F2中,灰体红眼雄果蝇所占的比例是______.
(3)研究人员让一群灰体果蝇自由交配,产生的F2中灰体:黑体=35:1,则亲代灰体果蝇中纯合子的比例是______.
正确答案
解:(1)分析表格中性别决定的情况可知,受精卵中性染色体组成含有2条X染色体则发育成雌性,含有一条X染色体发育成雄性,因此果蝇的性别取决于X染色体的数目.
(2)根据题意已知左侧身体细胞性染色体组成为XX,右侧身体细胞性染色体组成为XO,而果蝇本身的基因型应该是XX,则说明右侧身体细胞在有丝分裂过程中发生了染色体(数目)变异.
(2)①题目中“黑体残翅雌果蝇与灰长翅雄果蝇杂交,F1全为灰体长翅,说明灰体长翅是显性性状.用F1雄果蝇进行测交,测交后代只出现灰体长翅:黑体长翅=1:1”可以看出该果蝇的基因灰、长基因位于同一对同源染色体上的非等位基因,属于连锁关系,不遵循基因的自由组合定律.F1雌果蝇与黑体残翅果蝇杂交子代中出现灰体残翅和黑体长翅果蝇的原因是F1雌性(灰体长翅)果蝇在减数分裂产生生殖细胞时发生了交叉互换.
②黑体白眼果蝇与灰体红眼果蝇交配,F1中红眼都是雌性,白眼都是雄性,说明眼色与性别相关联,为伴X遗传,且红眼是显性性状,亲本的基因型分别是XdXd、XDY;已知灰体是显性性状,后代中灰体与黑体果蝇都有雌有雄,说明是常染色体遗传,亲本的相关基因型是Aa、aa,所以亲代中灰体红眼果蝇的基因型是AaXDY,黑体白眼果蝇的基因型是aaXdXd,F1中有四种基因型:AaXDXd、aaXDXd、AaXdY、aaXdY,F1中雌雄个体自由交配产生的F2中灰体红眼雄果蝇所占的比例是(1-×
)×
×
=
.
(3)由于灰体果蝇自由交配,产生的F1中灰体:黑体=35:1,说明隐性个体黑体果蝇aa占.则在该群体中,a的基因频率
,A的基因频率
.设亲代灰体果蝇中纯合子的比例为x,则P(A)=x+
=
,x=
.因此,亲代灰体果蝇中纯合子的比例是
.
故答案为:
(1)X 染色体数目的变异
(2)①灰体长翅 这两对基因位于一对同源染色体上 F1雌性(灰体长翅)果蝇在减数分裂产生生殖细胞时发生了交叉互换
②AaXDY
(3)
解析
解:(1)分析表格中性别决定的情况可知,受精卵中性染色体组成含有2条X染色体则发育成雌性,含有一条X染色体发育成雄性,因此果蝇的性别取决于X染色体的数目.
(2)根据题意已知左侧身体细胞性染色体组成为XX,右侧身体细胞性染色体组成为XO,而果蝇本身的基因型应该是XX,则说明右侧身体细胞在有丝分裂过程中发生了染色体(数目)变异.
(2)①题目中“黑体残翅雌果蝇与灰长翅雄果蝇杂交,F1全为灰体长翅,说明灰体长翅是显性性状.用F1雄果蝇进行测交,测交后代只出现灰体长翅:黑体长翅=1:1”可以看出该果蝇的基因灰、长基因位于同一对同源染色体上的非等位基因,属于连锁关系,不遵循基因的自由组合定律.F1雌果蝇与黑体残翅果蝇杂交子代中出现灰体残翅和黑体长翅果蝇的原因是F1雌性(灰体长翅)果蝇在减数分裂产生生殖细胞时发生了交叉互换.
②黑体白眼果蝇与灰体红眼果蝇交配,F1中红眼都是雌性,白眼都是雄性,说明眼色与性别相关联,为伴X遗传,且红眼是显性性状,亲本的基因型分别是XdXd、XDY;已知灰体是显性性状,后代中灰体与黑体果蝇都有雌有雄,说明是常染色体遗传,亲本的相关基因型是Aa、aa,所以亲代中灰体红眼果蝇的基因型是AaXDY,黑体白眼果蝇的基因型是aaXdXd,F1中有四种基因型:AaXDXd、aaXDXd、AaXdY、aaXdY,F1中雌雄个体自由交配产生的F2中灰体红眼雄果蝇所占的比例是(1-×
)×
×
=
.
(3)由于灰体果蝇自由交配,产生的F1中灰体:黑体=35:1,说明隐性个体黑体果蝇aa占.则在该群体中,a的基因频率
,A的基因频率
.设亲代灰体果蝇中纯合子的比例为x,则P(A)=x+
=
,x=
.因此,亲代灰体果蝇中纯合子的比例是
.
故答案为:
(1)X 染色体数目的变异
(2)①灰体长翅 这两对基因位于一对同源染色体上 F1雌性(灰体长翅)果蝇在减数分裂产生生殖细胞时发生了交叉互换
②AaXDY
(3)
在某XY型二倍体植株中,控制抗病(A)与易感病(a)、高茎(B)与矮茎(b)的基因分别位于两对常染色体上.
(1)两株植物杂交,F1中抗病矮茎出现的概率为,则两个亲本的基因型为______.
(2)让纯种抗病高茎植株与纯种易感病矮茎植株杂交得F1,F1雌雄随机交配得F2,
①若含a基因的花粉有一半死亡,则F2中抗病植株的比例为______.
②与F1相比,F2中B基因的基因频率______(填“变大”、“变小”或“不变”),
③该种群是否发生了进化?______(填“是”或“否”)
(3)现预利用单倍体育种方法判定某一抗病矮茎雄性植株的基因型.请以杂合子为例,用遗传图解配以文字说明判定过程.
______
(4)用X射线照射纯种高茎个体的花粉后,人工传粉至多株纯种矮茎个体的雌蕊柱头上,在不改变种植环境的条件下,得F1共1812株,其中出现了一株矮茎个体.推测该矮茎个体出现的原因可能有是高茎基因B突变为矮茎基因b,也可能是因为含高茎基因B的染色体出现______.
正确答案
解:(1)F1中抗病矮茎(A_bb)出现的概率为(
×
),则后代A_的概率为
,bb的概率为
,因此亲本的基因型为AaBb和Aabb.
(2)让纯种抗病高茎植株与纯种易感病矮茎植株杂交得F1,F1自交时,产生AB、Ab、aB、ab4种比例相等的雌雄配子.若含a基因的花粉有一半死亡,则雄配子的比例为AB:Ab:aB:ab=2:2:1:1.因此,F2代的表现型及其比例是抗病高茎:抗病矮茎:易感病高茎:易感病矮茎=15:5:3:1,其中抗病植株的比例为.与F1代相比,F2代中,B基因的基因频率不变,但由于A、a基因的频率发生了改变,所以该种群发生了进化.
(3)第(2)题中F2中某一抗病矮茎植株的基因型为AAbb或Aabb,可以用花药离体培养分确定其基因型:若是杂合子,后代发生性状分离,出现易感病矮茎植株,反之为纯合子.
(4)纯种高茎的基因型为BB,与矮茎bb杂交,后代应该全部是Bb高茎,其中出现了一株矮茎个体bb,可能是高茎基因B突变为矮茎基因b,也可能是含高茎基因B的染色体片段缺失.
故答案为:
(1)AaBb、Aabb
(2) 不变 是
(3)
说明:可用单倍体育种方法检测,若后代出现易感病矮茎植株,则基因型为Aabb,反之,则为AAbb.
(4)片段缺失
解析
解:(1)F1中抗病矮茎(A_bb)出现的概率为(
×
),则后代A_的概率为
,bb的概率为
,因此亲本的基因型为AaBb和Aabb.
(2)让纯种抗病高茎植株与纯种易感病矮茎植株杂交得F1,F1自交时,产生AB、Ab、aB、ab4种比例相等的雌雄配子.若含a基因的花粉有一半死亡,则雄配子的比例为AB:Ab:aB:ab=2:2:1:1.因此,F2代的表现型及其比例是抗病高茎:抗病矮茎:易感病高茎:易感病矮茎=15:5:3:1,其中抗病植株的比例为.与F1代相比,F2代中,B基因的基因频率不变,但由于A、a基因的频率发生了改变,所以该种群发生了进化.
(3)第(2)题中F2中某一抗病矮茎植株的基因型为AAbb或Aabb,可以用花药离体培养分确定其基因型:若是杂合子,后代发生性状分离,出现易感病矮茎植株,反之为纯合子.
(4)纯种高茎的基因型为BB,与矮茎bb杂交,后代应该全部是Bb高茎,其中出现了一株矮茎个体bb,可能是高茎基因B突变为矮茎基因b,也可能是含高茎基因B的染色体片段缺失.
故答案为:
(1)AaBb、Aabb
(2) 不变 是
(3)
说明:可用单倍体育种方法检测,若后代出现易感病矮茎植株,则基因型为Aabb,反之,则为AAbb.
(4)片段缺失
南瓜的皮色有白色、黄色和绿色三种,该性状的遗传涉及两对基因(H、h和Y、y).有人利用白色(甲)、黄色和绿色3个纯合品种进行了如下三个杂交实验:
实验1:黄x绿,F1为黄色,F1自交,F2为3黄:1绿
实验2:白色(甲)X黄,F1为白色,F1自交,F2为12白:3黄:1绿
(1)与南瓜皮色有关的两对基因(H、h和Y、y)位于______对同源染色体上.
(2)南瓜皮的色素、酶和基因的关系如图1所示:
①H基因的作用是使酶1失去活性,而h基因无此效应,则控制酶2合成的基因应该是______.
②上述杂交实验中,用作亲本的白色(甲)、黄色和绿色品种的基因型依次是______、______ 和______.
③实验2得到的F2代南瓜中、白色南瓜的基因型有______种,其中纯合白色南瓜占全部白色南瓜的比例为______.
④实验者接着做了第三个实验:白色(乙)X 绿→F1为白色,然后对F1植株进行测交,F2为2白:1黄:1绿,则白色(乙)的基因型为______,若将F2代白皮南瓜植株自交,理论上F3南瓜皮色的表现型比例为白:黄:绿=______.
⑤将基因型不同的两株白皮南瓜植株杂交,若F1代的皮色仅有白色和黄色两种,则两亲本植株的基因型为______.
(3)研究发现,与正常酶1比较,失去活性的酶1的氨基酸序列有两个突变位点,如图2:
注:字母代表氨基酸,数字表示氨基酸位置,箭头表示突变的位点
①可以推测,酶1氨基酸序列a、b两处的突变都是控制酶1合成的基因发生突变的结果,其中a处是发生碱基对的______导致的,b处是发生碱基对的______导致的.
②研究还发现,失活酶1的相对分子质量明显小于正常酶1,出现此现象的原因可能是基因突变导致翻译过程______.
正确答案
解:(1)因为实验2结果后代的性状分离比为12:3:1,为分离比9:3:3:1的变式,因此这两对基因位于两对同源染色体上,F2绿色基因型为hhyy,黄色为H_yy,白色H_Y_和hhY_或黄色hhY_,白色H_Y_和H_yy,将分析结果代入实验1验证,结果正确.
(2)①H基因使酶1失去活性,h基因无此效应,因此实验2中F2代黄色南瓜基因型为hhY_,由图可知,Y为控制酶2合成的基因.
②由①分析可知,F1中白色基因型为HhYy,亲代白色(甲)为HHyy,黄色为hhYY.
③实验2得到的F2白色南瓜基因型为H_Y_和H_yy,白色南瓜占12/16,而纯合白色南瓜占2/16,即可得纯合白色南瓜占全部白色南瓜比例为1/6.
④F1测交所得F2中,绿色南瓜基因型为hhyy,黄色南瓜基因型为hhYy,所以F1中一定有基因h和y及Y,结合前面分析可知,F1基因型为HhYy,亲本乙为HHYY;F2中白色南瓜基因型及比例为HhYy:Hhyy=1:1,HhYy自交后代表现型及比例为1/2(12/16白,3/16黄,1/16绿),Hhyy自交后代表现型及比例为1/2(3/4白,1/4绿),F3表现型及比例为白:黄:绿=24:3:5.
⑤由前面分析可知,白色亲本基因型为H_Y_或H_yy,F1中黄色南瓜基因型为hhY_,两亲本基因都有h基因,其中一亲本必有Y基因,则两亲本基因型为HhY_或Hhyy,据题意,亲本组合有三种,而亲本组合为HhYY×Hhyy时,后代有3种表现型,不符合题意,即亲本组合为HhYY×HhYy 或 HhYY×Hhyy.
(3)①据图分析,a处基因突变只导致一个氨基酸改变,这种突变可能是碱基对的替换,而b处突变导致b处及其后肽链上所有氨基酸都发生变化,可能是碱基对的增添或缺失.
②失活酶1的相对分子质量明显小于正常酶1,说明其肽链比正常的要短,可能为翻译提前终止.
答案:(1)两(或不同)
(2)①Y ②HHyy hhYY hhyy ③6 1/6 ④HHYY 24:3:5 ⑤HhYY×HhYy或HhYY×Hhyy
(3)①替换 增添或缺失 ②提前终止
解析
解:(1)因为实验2结果后代的性状分离比为12:3:1,为分离比9:3:3:1的变式,因此这两对基因位于两对同源染色体上,F2绿色基因型为hhyy,黄色为H_yy,白色H_Y_和hhY_或黄色hhY_,白色H_Y_和H_yy,将分析结果代入实验1验证,结果正确.
(2)①H基因使酶1失去活性,h基因无此效应,因此实验2中F2代黄色南瓜基因型为hhY_,由图可知,Y为控制酶2合成的基因.
②由①分析可知,F1中白色基因型为HhYy,亲代白色(甲)为HHyy,黄色为hhYY.
③实验2得到的F2白色南瓜基因型为H_Y_和H_yy,白色南瓜占12/16,而纯合白色南瓜占2/16,即可得纯合白色南瓜占全部白色南瓜比例为1/6.
④F1测交所得F2中,绿色南瓜基因型为hhyy,黄色南瓜基因型为hhYy,所以F1中一定有基因h和y及Y,结合前面分析可知,F1基因型为HhYy,亲本乙为HHYY;F2中白色南瓜基因型及比例为HhYy:Hhyy=1:1,HhYy自交后代表现型及比例为1/2(12/16白,3/16黄,1/16绿),Hhyy自交后代表现型及比例为1/2(3/4白,1/4绿),F3表现型及比例为白:黄:绿=24:3:5.
⑤由前面分析可知,白色亲本基因型为H_Y_或H_yy,F1中黄色南瓜基因型为hhY_,两亲本基因都有h基因,其中一亲本必有Y基因,则两亲本基因型为HhY_或Hhyy,据题意,亲本组合有三种,而亲本组合为HhYY×Hhyy时,后代有3种表现型,不符合题意,即亲本组合为HhYY×HhYy 或 HhYY×Hhyy.
(3)①据图分析,a处基因突变只导致一个氨基酸改变,这种突变可能是碱基对的替换,而b处突变导致b处及其后肽链上所有氨基酸都发生变化,可能是碱基对的增添或缺失.
②失活酶1的相对分子质量明显小于正常酶1,说明其肽链比正常的要短,可能为翻译提前终止.
答案:(1)两(或不同)
(2)①Y ②HHyy hhYY hhyy ③6 1/6 ④HHYY 24:3:5 ⑤HhYY×HhYy或HhYY×Hhyy
(3)①替换 增添或缺失 ②提前终止
扫码查看完整答案与解析