- 平面的概念、画法及表示
- 共36题
正方体中,
分别是棱
的中点,则异面直线
与
所成的角等于__________.
正确答案
解析
略
知识点
在四边形ABCD中,,且
·
=0,则四边形ABCD是 ( )
正确答案
解析
略
知识点
如图7,是底面半径为1的圆柱的内接正六棱柱(底面是正六边形,侧棱垂直于底面),过FB作圆柱的截面交下底面于
,已知
.
(1)证明:四边形是平行四边形;
(2)证明:;
(3)求三棱锥的体积.
正确答案
见解析。
解析
(1)因为圆柱的上下底面平行,且FB、是截面与圆柱上、下底面的交线,
所以FB//.
依题意得,正六边形ABCDEF是圆内接正六边形,
所以,正六边形的边长等于圆的半径,即AB=AF=1.
在ABF中,由正六边形的性质可知,,
所以,,即
同理可得,所以
,故四边形BFE1C1是平行四边形.
(2)
连结FC,则FC是圆柱上底面的圆的直径,∵,即BF⊥BC
又∵B1B⊥平面ABCDEF,BF平面ABCDEF,∴BF⊥B1B
∵B1B∩BC=B,∴BF⊥平面B1BCC1.
又∵B1C平面B1BCC1,∴FB⊥CB1.
(3)连结F1C1,则四边形CFF1C1是矩形,且FC=F1C1=2,FF1⊥F1C1.
在RT FF1C1中,,∴三棱锥A1—ABF的高为3.
∴三棱锥A1—ABF的体积,
又三棱锥A1—ABF的体积等于三棱锥A—A1BF的体积,
∴三棱锥A—A1BF的体积等于.
知识点
如图所示,在棱长为2的正方体中,
,
分别为线段
,
的
中点。
(1)求三棱锥的体积;
(2)求异面直线与
所成的角。
正确答案
(1)(2)
解析
(1)在正方体中,
∵是
的中点,
∴, ………………3分
又平面
,即
平面
,
故,
所以三棱锥的体积为
,………………6分
(2)连,由
、
分别为线段
、
的中点,
可得∥
,故
即为异面直线
与
所成的角。 ………………… 8分
∵平面
,
平面
,∴
,
在△
中,
,
,
∴,∴
。
所以异面直线EF与所成的角为
。
知识点
如图6,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据:,
,
,
,
,DC=CE=1(百米).
(1)求△CDE的面积;
(2)求A,B之间的距离.
正确答案
答案: 见解析。
解析
(1)连结DE,在CDE中,,
(平方百米)
(2)依题意知,在RTACD中,
在BCE中,
由正弦定理
得
∵
在ABC中,由余弦定理
可得
∴(百米)
知识点
扫码查看完整答案与解析