- 圆锥曲线的定点、定值问题
- 共61题
20. 已知左焦点为的椭圆过点
.过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)若为线段
的中点,求
;
(3)若,求证直线
恒过定点,并求出定点坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.已知椭圆过点P(3,1),其左、右焦点分别为F1,F2。且
(1)求椭圆E的方程;
(2)若M,N是直线上的两个动点,且
,则以MN为直径的圆C是否过定点?请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.给定椭圆,称圆心在原点
,半径为
的圆是椭圆
的“准圆”。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点,且
分别交其“准圆”于点
①当为“准圆”与
轴正半轴的交点时,求
的方程;
②求证:为定值
正确答案
(1)
所以,椭圆方程:,
准圆方程:
(2)①易知且直线斜率存在,
设直线为
联立
因为椭圆与直线有且只有一个交点,
所以,因此
所以的方程为
②<ⅰ>当的斜率存在时,设点
,
设直线
由---(*)
同理,联立和椭圆方程可得:
---(**)
由(*)(**)可知,是方程
的两个根
,
因此是准圆的直径,所以
<ⅱ>当中有一条斜率不存在时,
,此时
所以
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆和圆
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率
的值;
(ⅱ)若椭圆上存在点,使得
,求椭圆离心率
的取值范围;
(2)设直线与
轴、
轴分别交于点
,问当点P在椭圆上运动时,
是否为定值?请证明你的结论.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,已知抛物线的准线为
,焦点为
,圆
的圆心在
轴的正半轴上,圆
与
轴相切,过原点
作倾斜角为
的直线
,交直线
于点
,交圆
于不同的两点
,且
。
(1)求圆和抛物线
的方程;
(2)若为抛物线
上的动点,求
的最小值;
(3)过直线上的动点
向圆
作切线,切点分别为
,求证:直线
恒过一个定点,并求该定点的坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析