- 圆锥曲线的定点、定值问题
- 共61题
20. 已知左焦点为的椭圆过点.过点分别作斜率为的椭圆的动弦,设分别为线段的中点.
(1)求椭圆的标准方程;
(2)若为线段的中点,求;
(3)若,求证直线恒过定点,并求出定点坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.已知椭圆过点P(3,1),其左、右焦点分别为F1,F2。且
(1)求椭圆E的方程;
(2)若M,N是直线上的两个动点,且,则以MN为直径的圆C是否过定点?请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点,且分别交其“准圆”于点
①当为“准圆”与轴正半轴的交点时,求的方程;
②求证:为定值
正确答案
(1)
所以,椭圆方程:,
准圆方程:
(2)①易知且直线斜率存在,
设直线为
联立
因为椭圆与直线有且只有一个交点,
所以,因此
所以的方程为
②<ⅰ>当的斜率存在时,设点,
设直线
由---(*)
同理,联立和椭圆方程可得:---(**)
由(*)(**)可知,是方程的两个根
,
因此是准圆的直径,所以
<ⅱ>当中有一条斜率不存在时,,此时
所以
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为.
(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率的值;
(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;
(2)设直线与轴、轴分别交于点,问当点P在椭圆上运动时,是否为定值?请证明你的结论.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,圆与轴相切,过原点作倾斜角为的直线,交直线于点,交圆于不同的两点,且。
(1)求圆和抛物线的方程;
(2)若为抛物线上的动点,求的最小值;
(3)过直线上的动点向圆作切线,切点分别为,求证:直线恒过一个定点,并求该定点的坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析