- 线面角和二面角的求法
- 共279题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
如图所示,在四棱锥







(1)证明:

(2) 若


正确答案
见解析
解析
(1)因为



所以
又




因为


(2) 由(1)可知


又底面



则


在

在
所以二面角

知识点
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
正确答案
见解析
解析
(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1,
因为A1O⊥平面ABC,所以A1O⊥BC。
因为AB=AC,OB=OC,得AO⊥BC,
所以BC⊥平面AA1O,所以BC⊥OE,
所以OE⊥平面BB1C1C。
又


(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,
则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2),
由

由(1)得平面BB1C1C的法向量是
设平面A1B1C的法向量n=(x,y,z),
由
令y=1,得x=2,z=-1,即n=(2,1,-1),
所以
即平面BB1C1C与平面A1B1C的夹角的余弦值是
知识点
复数
正确答案
解析


知识点
已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
正确答案
见解析
解析
(1)原曲线方程可化简得:
由题意可得:
(2)由已知直线代入椭圆方程化简得:

由韦达定理得:

设






欲证


即
将①②代入易知等式成立,则
知识点
设函数f(x)=aex+
(1)求f(x)在[0,+∞)内的最小值;
(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=
正确答案
(1)b+2
(2)
解析
(1)设t=ex(t≥1),则
∴
①当a≥1时,y′>0,∴
∴当t=1(x=0)时,f(x)的最小值为
②当0<a<1时,
(2)求导函数,可得)
∵曲线y=f(x)在点(2,f(2))处的切线方程为y=
∴


知识点
已知



(1)设





(2)若点



正确答案
见解析。
解析
设正四棱柱的高为
(1) 连



∴ 


∵ 




∴ 

∴ 

(2)
建立如图空间直角坐标系,有
设平面

∵ 

∴ 点



知识点
已知等差数列{an}满足a2=0,a6+a8=﹣10
(1)求数列{an}的通项公式;
(2)求数列{
正确答案
(1){an}的通项公式为an=2﹣n
(2)Sn=
解析
(1)设等差数列{an}的公差为d,由已知条件可得
解得:
故数列{an}的通项公式为an=2﹣n;
(2)设数列{






当n>1时,①﹣②得:



=1﹣(


=1﹣(1﹣


所以Sn=
综上,数列{

知识点
扫码查看完整答案与解析






























