- 线面角和二面角的求法
- 共279题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面。
(1)证明:平面;
(2) 若,,求二面角的正切值。
正确答案
见解析
解析
(1)因为平面,平面,
所以,
又平面,平面,所以,
因为,所以平面.
(2) 由(1)可知平面,所以,
又底面为矩形,从而底面为正方形,设,连结,
则所以为二面角的平面角,
在中,由等面积法可得,又
在中,
所以二面角的正切值为。
知识点
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
正确答案
见解析
解析
(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1,
因为A1O⊥平面ABC,所以A1O⊥BC。
因为AB=AC,OB=OC,得AO⊥BC,
所以BC⊥平面AA1O,所以BC⊥OE,
所以OE⊥平面BB1C1C。
又,,得.
(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,
则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2),
由得点E的坐标是,
由(1)得平面BB1C1C的法向量是,
设平面A1B1C的法向量n=(x,y,z),
由得
令y=1,得x=2,z=-1,即n=(2,1,-1),
所以,
即平面BB1C1C与平面A1B1C的夹角的余弦值是.
知识点
设函数f(x)=aex++b(a>0)。
(1)求f(x)在[0,+∞)内的最小值;
(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=,求a,b的值。
正确答案
(1)b+2
(2)。
解析
(1)设t=ex(t≥1),则
∴
①当a≥1时,y′>0,∴在t≥1上是增函数,
∴当t=1(x=0)时,f(x)的最小值为
②当0<a<1时,,当且仅当at=1(x=﹣lna)时,f(x)的最小值为b+2;
(2)求导函数,可得)
∵曲线y=f(x)在点(2,f(2))处的切线方程为y=,
∴,即,解得。
知识点
扫码查看完整答案与解析