- 空间中直线与直线之间的位置关系
- 共26题
在空间,下列命题正确的是
正确答案
解析
由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。
知识点
已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于 ( )
正确答案
解析
略。
知识点
如图,在四棱台中,
平面
,底面
是平行四边形,
,
,
60°
(1)证明:;
(2)证明:.
正确答案
见解析。
解析
(1)证明:因为,所以设
AD=a,则AB=2a,又因为60°,所以在
中,由余弦定理得:
,所以BD=
,所以
,故BD⊥AD,又因为
平面
,所以
BD,又因为
, 所以
平面
,故
.
(2)连结AC,设ACBD=0, 连结
,由底面
是平行四边形得:O是AC的中点,由四棱台
知:平面ABCD∥平面
,因为这两个平面同时都和平面
相交,交线分别为AC、
,故
,又因为AB=2a, BC=a,
,所以可由余弦定理计算得AC=
,又因为A1B1=2a, B1C1=
,
,所以可由余弦定理计算得A1C1=
,所以A1C1∥OC且A1C1=OC,故四边形OCC1A1是平行四边形,所以CC1∥A1O,又CC1
平面A1BD,A1O
平面A1BD,所以
.
知识点
如图,弧是半径为
的半圆,
为直径,点
为弧
的中点,点
和点
为线段
的三等分点,线段
与弧
交于点
,且
,平面
外一点
满足
平面
,
。
(1)求异面直线与
所成角的大小;
(2) 将(及其内部)绕
所在直线旋转一周形成一几何体,求该几何体的体积。
正确答案
(1)(2)
解析
(1) 平面
,
平面
,
,
异面直线
与
所成角的大小为
。
(2)连结,在
中,由余弦定理得:
,
由题设知,所得几何体为圆锥,其底面积为 ,高为
。
该圆锥的体积为。
知识点
已知是两条直线,
是两个平面,给出下列命题:①若
,则
;②若平面
上有不共线的三点到平面
的距离相等,则
;③若
为异面直线
,则
,其中正确命题的个数
正确答案
解析
略
知识点
扫码查看完整答案与解析