热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”。

如图,“盾圆”是由椭圆与抛物线中两段曲线弧合成,为椭圆的左、右焦点,为椭圆与抛物线的一个公共点,

(1)求椭圆的方程;

(2)是否存在过的一条直线,与“盾圆”依次交于四点,使得的面积比为?若存在,求出直线方程;若不存在,说明理由。

正确答案

见解析

解析

(1)由的准线为,故记

,所以,故椭圆为,         4分

(2) 设直线, 

联立,得,则     ①

联立,得,则                      ②

8分

的面积比

整理得                                     12分

, 由②知坐标为,不在“盾圆”上;

同理也不满足,故符合题意的直线不存在,                        14分

知识点

直线的一般式方程椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

已知直角坐标平面内一动点到点的距离与直线的距离相等。

(1)求动点的轨迹的方程;

(2)过点)作斜率为的直线与曲线相交于两点,若为钝角,求实数的取值范围;

(3)过点)作直线与曲线相交于两点,问:是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,求出的值;若不存在,请说明理由。

正确答案

见解析

解析

(1)由抛物线的定义,知所求P点的轨迹是以为焦点,直线为准线的抛物线,其方程为,其中

所以,动点P的轨迹C的方程为,………………………………………4分

(2)由题意知,直线AB的方程为

代入,得

,则

为钝角,

因此

综上,实数的取值范围是,…………………8分

(3)设过点的直线方程为,代入,得

,设,则

于是

的中点坐标为

设存在直线满足条件,则

化简,得

所以,对任意的恒成立,

所以解得

所以,当时,存在直线与以线段为直径的圆始终相切,……13分

知识点

直线与圆锥曲线的综合问题直接法求轨迹方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

已知椭圆)的右焦点,右顶点,且

(1)求椭圆的标准方程;

(2)若动直线与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.

正确答案

见解析

解析

椭圆C的标准方程为

.                                          

得:,  

.

,,即P

M.

又Q, 

+=恒成立,故,即.      存在点M(1,0)适合题意.   

知识点

数量积判断两个平面向量的垂直关系椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好经过抛物线的准线,且经过点

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线的方程为是经过椭圆左焦点的任一弦,设直线与直线相交于点,记的斜率分别为.试探索之间有怎样的关系式?给出证明过程.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 14 分

20.如图,设点分别是椭圆的左、右焦点,为椭圆上位于轴上方的任意一点,且的面积最大值为1.

(1)求椭圆的方程;

(2)设直线,若均与椭圆相切,证明:

(3)在(2)的条件下,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 文科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题