- 导数的几何意义
- 共154题
18. 已知,函数
。
(1)当时,求曲线
在点
处的切线方程;
(2)求在区间
上的最小值。
正确答案
(1)当时,
,
,
所以,因此
。
即曲线在点
处的切线斜率为
。
,
所以曲线在点
处的切线方程为
,
即。
(2)因为,所以
。
令,得
。
①若,则
,
在区间
上单调递增,此时函数
无最小值。
②若,当
时,
,函数
在区间
上单调递减,
当时,
,函数
在区间
上单调递增,
所以当时,函数
取得最小值
。
③若,则当
时,
,函数
在区间
上单调递减,
所以当时,函数
取得最小值
。
综上可知,当时,函数
在区间
上无最小值;
当时,函数
在区间
上的最小值为
;
当时,函数
在区间
上的最小值为
。
解析
解析已在路上飞奔,马上就到!
知识点
16. 已知函数,其图象在点(1,
)处的切线方程为
,则它在点
处的切线方程为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.以下正确命题的序号为__________
①命题“存在”的否定是:“不存在
”;
②函数的零点在区间
内;
③若函数满足
且
,则
=1023;
④函数切线斜率的最大值是2.
正确答案
②③
解析
解析已在路上飞奔,马上就到!
知识点
2.已知直线与曲线
在点
处的切线互相垂直,则
为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知函数.
(1)若,求曲线
在
处切线的斜率;
(2)求的单调区间;
(3)设,若对任意
,均存在
,使得
,求
的取值范围。
正确答案
(1)由已知,
.
故曲线在
处切线的斜率为
.
(2).
①当时,由于
,故
,
所以,的单调递增区间为
.
②当时,由
,得
.
在区间上,
,在区间
上
,
所以,函数的单调递增区间为
,单调递减区间为
.
(3)由已知,转化为.
由(2)知,当时,
在
上单调递增,值域为
,故不符合题意.
(或者举出反例:存在,故不符合题意.)
当时,
在
上单调递增,在
上单调递减,
故的极大值即为最大值,
,
所以,
解得.
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析