- 直线与椭圆的位置关系
- 共59题
已知椭圆过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若
则k=( )
正确答案
解析
知识点
已知椭圆的四个顶点恰好是一边长为2,一内角为
的菱形的四个顶点。
(1)求椭圆的方程;
(2)直线与椭圆
交于
,
两点,且线段
的垂直平分线经过点
,求
(
为原点)面积的最大值。
正确答案
(1)
(2)
解析
(1)因为椭圆的四个顶点恰好是一边长为2,
一内角为 的菱形的四个顶点,
所以,椭圆
的方程为
…………………4分
(2)设因为
的垂直平分线通过点
, 显然直线
有斜率,
当直线的斜率为
时,则
的垂直平分线为
轴,则
所以
因为,
所以,当且仅当
时,
取得最大值为
………………6分
当直线的斜率不为
时,则设
的方程为
所以,代入得到
当, 即
方程有两个不同的解
又,
…………………9分
所以,又
,化简得到
代入,得到
…………………10分
又原点到直线的距离为
所以
化简得到 …………………12分
因为,所以当
时,即
时,
取得最大值
综上,面积的最大值为
…………………14分
知识点
已知椭圆的中心在原点,焦点在轴上,离心率为
,且经过点
.
直线交椭圆于
两不同的点.
(1)求椭圆的方程;
(2)若直线不过点
,求证:直线
与
轴围成等腰三角形.
正确答案
见解析。
解析
知识点
已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(1)求椭圆的方程;
(2)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围。
正确答案
(1)
(2)
解析
(1)依题意不妨设,
,则
,
.
由,得
.又因为
,
解得.
所以椭圆的方程为
. ……………4分
(2)依题直线的方程为
.
由得
.
设,
,则
,
. …………6分
所以弦的中点为
. ……………7分
所以
. ……………9分
直线的方程为
,
由,得
,则
,
所以. …………11分
所以.……………12分
又因为,所以
.
所以.
所以的取值范围是
. ……………………14分
知识点
已知:椭圆(
),过点
,
的直线倾斜角为
,原点到该直线的距离为
。
(1)求椭圆的方程;
(2)斜率大于零的直线过与椭圆交于
,
两点,若
,求直线
的方程;
(3)是否存在实数,直线
交椭圆于
,
两点,以
为直径的圆过点
?若存在,求出
的值;若不存在,请说明理由。
正确答案
见解析
解析
(1)由,
,得
,
,
所以椭圆方程是:-----------------4分
(2)设EF:(
)代入
,得
,
设,
,由
,得
。
由,
--------------6分
得,
,
(舍去),(没舍去扣1分)
直线的方程为:
即
--------------------9分
(3)将代入
,得
(*)
记,
,PQ为直径的圆过
,则
,即
,又
,
,得
。
解得,此时(*)方程
,
存在
,满足题设条件。-----------------14分
知识点
扫码查看完整答案与解析