- 椭圆的几何性质
- 共178题
20.(本小题满分12分)
已知椭圆E:的焦点在
轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(I)当t=4,时,求△AMN的面积;
(II)当时,求k的取值范围.
正确答案
知识点
11.已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点。.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
正确答案
知识点
(本小题满分12分)
已知椭圆E:的焦点在
轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(I)当t=4,时,求△AMN的面积;
(II)当时,求k的取值范围.
正确答案
(I)设,则由题意知
,当
时,
的方程为
,
.
由已知及椭圆的对称性知,直线的倾斜角为
.因此直线
的方程为
.
将代入
得
.解得
或
,所以
.
因此的面积
.
(II)由题意,
,
.
将直线的方程
代入
得
.
由得
,故
.
由题设,直线的方程为
,故同理可得
,
由得
,即
.
当时上式不成立,
因此.
等价于
,
即.由此得
,或
,解得
.
因此的取值范围是
.
知识点
(本小题满分13分)
已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(I)求椭圆E的方程及点T的坐标;
(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣·∣PB∣,并求λ的值.
正确答案
(I)由已知,,则椭圆E的方程为
.
有方程组 得
.①
方程①的判别式为,由
,得
,
此方程①的解为,
所以椭圆E的方程为.
点T坐标为(2,1).
(II)由已知可设直线 的方程为
,
有方程组 可得
所以P点坐标为( ),
.
设点A,B的坐标分别为 .
由方程组 可得
.②
方程②的判别式为,由
,解得
.
由②得.
所以 ,
同理,
所以
.
故存在常数,使得
.
知识点
(本小题满分14分)
已知点和椭圆
.
(Ⅰ)设椭圆的两个焦点分别为,
,试求
的周长及椭圆的
离心率;
(Ⅱ)若直线与椭圆
交于两个不同的点
,
,直线
,
与
轴分别交于
,
两点,求证:
.
正确答案
考查方向
易错点
1、未注意到点在椭圆上而在运算中出错。
知识点
扫码查看完整答案与解析