- 椭圆的几何性质
- 共178题
7.已知椭圆与双曲线
的焦点重合,
分别为
的离心率,则( )
正确答案
解析
.由题意知,即
,
,代入
,得
.故选A.
考查方向
解题思路
根据焦点重合找出m,n的关系,,可知
,再写出两离心率之积进行判断。
易错点
离心率之积的判断会出错。
知识点
已知椭圆,过原点的两条直线
和
分别于椭圆交于
、
和
、
,设
的面积为
.
24. 设,
,用
、
的坐标表示点
到直线
的距离,并证明
;
25. 设,
,
,求
的值;
26. 设与
的斜率之积为
,求
的值,使得无论
与
如何变动,面积
保持不变.
正确答案
(1)略
解析
试题分析:(1)依题意,直线l1的方程,利用点到直线间的距离公式可求得点C到直线l1的距离d,再利用|AB|=2|AO|可证得S
(1)直线的方程为
,
由点到直线的距离公式得点到
的距离为
,
因为,
所以.
考查方向
解题思路
直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.
易错点
准确计算化简
正确答案
((2)或
.
解析
试题分析:(2)由(1)得: 进而得到答案.
(2)由,消去
解得
,
由(1)得
由题意知,
解得或
.
考查方向
解题思路
直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.
易错点
面积公式的恰当选取运用
正确答案
(3)
解析
试题分析:(3)设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组 消去y解得
,
,利用
,整理得
,由题意知
与
无关,
得到然后求解即可.
(3)设,则
,设
,
,
由,得
,
同理,
由(1)知,
,
整理得,
由题意知与
无关,
则,解得
.
所以.
考查方向
解题思路
直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.当直线(斜率为k)与圆锥曲线交于点A(x1,y1),B(x2,y2)时,则|AB|=·|x1-x2|=
|y1-y2|,而|x1-x2|=
,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.
易错点
化简计算及方程恒成立问题
平面直角坐标系中,已知椭圆C:
的离心率为
且点
,
) 在椭圆C上.
24.求椭圆C的方程;
25.设椭圆E:,P为椭圆C上任意一点,过点P的直线
交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(i)求的值;
(ii)求面积的最大值.
正确答案
.
解析
(I)由题意知,则
,
又,可得
,
所以椭圆的方程为
.
考查方向
解题思路
(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C的方程;
易错点
椭圆方程中系数的求解
正确答案
2,
解析
【解析】 (II)由(I)知椭圆的方程为
(i)设,由题意知
,
因为,又
, 即
,
所以 ,即
.
(ii)设,
将代入椭圆
的方程,
可得,
由 ,可得
则有
所以
因为 直线与
轴交点的坐标为
,
所以 的面积
令,将
代入椭圆
的方程,
可得 ,
由,可得
由①②可知 ,
因此,故
,
当且仅当时,即
时取得最大值
,
由(i)知,面积为
,
所以 面积的最大值为
.
考查方向
解题思路
(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;
(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.
易错点
直线与圆锥曲线的综合问题;椭圆的标准方程;曲线与方程.菁优网版权所有
一种画椭圆的工具如图1所示.是滑槽
的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且
,
.当栓子D在滑槽AB内作往复运动时,带动N绕
转动,M处的笔尖画出的椭圆记为C.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.
26.求椭圆C的方程;
27.设动直线与两定直线
和
分别交于
两点.若直线
总与椭圆
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
正确答案
(Ⅰ)
解析
(Ⅰ)因为,当
在x轴上时,等号成立;同理
,当
重合,即
轴时,等号成立. 所以椭圆C的中心为原点
,长半轴长为
,短半轴长为
,其方程为
考查方向
解题思路
(Ⅰ)由题意并结合三角形三边关系(两边之和大于第三边,两边之差小于第三边)知,,即
,这表明椭圆
的长半轴长为
,短半轴长为
,即可求出椭圆
的方程;
易错点
粗心算错。
正确答案
(Ⅱ)当直线与椭圆
在四个顶点处相切时,
的面积取得最小值8.
解析
(Ⅱ)(1)当直线的斜率不存在时,直线
为
或
,都有
.
(2)当直线的斜率存在时,设直线
, 由
消去
,可得
.因为直线
总与椭圆
有且只有一个公共点,所以
,即
. ①
又由 可得
;同理可得
.由原点
到直线
的距离为
和
,可得
. ②
将①代入②得,. 当
时,
;当
时,
.因
,则
,
,所以
,当且仅当
时取等号.所以当
时,
的最小值为8.
综合(1)(2)可知,当直线与椭圆
在四个顶点处相切时,
的面积取得最小值8.
考查方向
解题思路
(Ⅱ)首先讨论直线的斜率存在与不存在两种情况,当直线
的斜率不存在时,易知直线
的方程为
或
,即可求出
的面积的值;当直线
的斜率存在时,设出直线
的方程
,然后联立直线
与椭圆的方程并整理得到一元二次方程
,然后根据题意直线
总与椭圆
有且只有一个公共点知,
即可得到
.再分别联立直线
与直线
和
可解得点
和点
的坐标,并根据原点
到直线
的距离公式可求得
,于是
的面积可表示为
消去参数
可得
,于是分两种情况进行讨论:①当
时;②当
时,分别求出
的面积的最小值,并比较即可求出
的面积取得最小值.
易错点
忘记讨论斜率不存在的情况。
已知抛物线(
)的焦点为
,过点
作直线
交抛物线
于
,
两点.椭圆
的中心在原点,焦点在
轴上,点
是它的一个顶点,且其离心率
.
23.分别求抛物线和椭圆
的方程;
24.经过,
两点分别作抛物线
的切线
,
,切线
与
相交于点
.证明:
.
正确答案
见解析
解析
由已知抛物线的焦点为
可得抛物线
的方程为
.
设椭圆的方程为
,半焦距为
.由已知可得:
,解得
.所以椭圆
的方程为:
.
考查方向
解题思路
第一问根据离心率及焦点求抛物线C和椭圆E的方程,第二问利用平面向量的数量积的坐标公式证明线段和线段垂直。
易错点
计算错误,利用平面向量证明线段垂直
正确答案
见解析
解析
显然直线的斜率存在,否则直线
与抛物线
只有一个交点,不合题意,
故可设直线的方程为
,
由, 消去
并整理得
∴
.
∵抛物线的方程为
,求导得
,
∴过抛物线上
两点的切线方程分别是
,
,
即,
,
解得两条切线的交点
的坐标为
,即
,
,
∴.
考查方向
解题思路
第一问根据离心率及焦点求抛物线C和椭圆E的方程,第二问利用平面向量的数量积的坐标公式证明线段和线段垂直。
易错点
计算错误,利用平面向量证明线段垂直
在平面直角坐标系xOy中,点C在椭圆M:=1(a>b>0)上.若点A(-a,0),B(0,
),且
=
.
20.求椭圆M的离心率;
21.设椭圆M的焦距为4,P,Q是椭圆M上不同的两点,线段PQ的垂直平分线为直线l,且直线l不与y轴重合.
①若点P(-3,0),直线l过点(0,-),求直线l的方程;
②若直线l过点(0,-1) ,且与x轴的交点为D,求D点横坐标的取值范围.
正确答案
(1);
解析
解:(1)设C (x0,y0),则=(a,
),
=(x0,y0-
).
因为=
,所以(a,
)=
(x0,y0-
)=
,
得
代入椭圆方程得a2=.
因为a2-b2=c2,所以e=.
考查方向
解题思路
本题考查直线与椭圆位置关系,解题步骤如下:
(1)设C(m,n),由向量共线的坐标表示,可得C的坐标,代入椭圆方程,可得a,b的关系,
再由离心率公式计算即可得到所求值;
(2)①由题意可得c=2,a=3, b2=5,可得椭圆方程,设直线PQ的方程为y=k(x+3),代入椭圆方程,运用韦达定理和中点坐标公式,再由两直线垂直的条件:斜率之积为-1,解方程可得k,进而得到所求直线方程;
②设直线PQ的方程为y=kx+m,代入椭圆方程可得,运用韦达定理和中点坐标公式,再由两直线垂直的条件,求得4m=5+9k2,再由中点在椭圆内,可得k的范围,再由直线l的方程可得D的横坐标的范围.
易错点
第二问容易计算错误
正确答案
(2)①y=-x+或y=-
x+
②(-
,0)∪(0,
)
解析
解:(2)①因为c=2,所以a2=9,b2=5,所以椭圆的方程为=1,
设Q (x0,y0),则=1.……①
因为点P(-3,0),所以PQ中点为,
因为直线l过点(0,-),直线l不与y轴重合,所以x0≠3,
所以=-1,
化简得x02=9-y02-y0.……②
将②代入①化简得y02-y0=0,解得y0=0(舍),或y0=
.
将y0=代入①得x0=±
,所以Q为(±
,
),
所以PQ斜率为1或,直线l的斜率为-1或-
,
所以直线l的方程为y=-x+或y=-
x+
.
②设PQ:y=kx+m,则直线l的方程为:y=--1,所以xD=-k.
将直线PQ的方程代入椭圆的方程,消去y得(5+9k2)x2+18kmx+9m2-45=0.…………①,
设P(x1,y1),Q(x2,y2),中点为N,
xN==-
,代入直线PQ的方程得yN=
,
代入直线l的方程得9k2=4m-5. ……②
又因为△=(18km)2-4(5+9k2) (9m2-45)>0,
化得m2-9k2-5<0.
将②代入上式得m2-4m<0,解得0<m<4,
所以-<k<
,且k≠0,所以xD=-k∈(-
,0)∪(0,
).
综上所述,点D横坐标的取值范围为(-,0)∪(0,
).
考查方向
解题思路
本题考查直线与椭圆位置关系,解题步骤如下:
(1)设C(m,n),由向量共线的坐标表示,可得C的坐标,代入椭圆方程,可得a,b的关系,
再由离心率公式计算即可得到所求值;
(2)①由题意可得c=2,a=3, b2=5,可得椭圆方程,设直线PQ的方程为y=k(x+3),代入椭圆方程,运用韦达定理和中点坐标公式,再由两直线垂直的条件:斜率之积为-1,解方程可得k,进而得到所求直线方程;
②设直线PQ的方程为y=kx+m,代入椭圆方程可得,运用韦达定理和中点坐标公式,再由两直线垂直的条件,求得4m=5+9k2,再由中点在椭圆内,可得k的范围,再由直线l的方程可得D的横坐标的范围.
易错点
第二问容易计算错误
已知抛物线C:
的焦点F也是椭圆C
;
的一个焦点,C
与C
的公共弦的长为2
,过点F的直线
与C
相交于A,B两点,与C
相交于C,D两点,且
与
同向。
24.求C的方程
25.若|AC|=||求直线
的斜率。
正确答案
解析
由:
知其焦点F的坐标为(0,1),因为F也是椭圆
的一焦点,
所以 1又
与
的公共弦的长为2
,
与
都关于y轴对称,且
的方程为
,由此易知
与
的公共点的坐标为(
),所以
2,联立1,2得
=9,
=8,故
的方程为
3;
考查方向
解题思路
根据已知条件可求得的焦点坐标为
,再利用公共弦长为
即可求解;
易错点
不会转化题中给出的条件与
的公共弦的长为2
正确答案
,
考查方向
易错点
1.第(2)问联立方程运算出错;
阅读下面这首宋诗,完成8—9题。
野泊对月有感
周莘
可怜江月乱中明,
应识逋逃①病客情。
斗柄阑干洞庭野,
角声凄断岳阳城。
酒添客泪愁仍溅,
浪卷归心暗自惊。
欲问行朝②近消息,
眼中群盗尚纵横。
【注释】①逋逃:愤激之词,意为飘泊无家。②行朝:迁徙不定的朝廷。
8.后人评价认为周莘此诗颔联写景很有特色,在写景上与李贺的诗《雁门太守行》第三四两句有异曲同工之妙,请结合诗句内容具体分析周诗颔联与《雁门太守行》第三四两句在写景手法上的相同之处。
9.本诗最后两联联表达了诗人的什么情感?请结合诗句作简要分析。
正确答案
两首诗都运用了动静结合(或视听结合)手法。(2)①周诗颔联前一句写静景(视觉),诗人立于洞庭荒野,仰望天空北斗横斜;后一句写动景(听觉),耳畔传来岳阳城凄凉的角声,暗指兵荒马乱,动静结合,渲染了空茫凄凉的意境。 ②李诗颔联前一句诗从听觉描写,在深秋死寂中满城响起角声;后一句从视觉描写,夜晚晚霞映照战场,胭脂般的血迹凝结在大地上,呈现一片紫色;视听结合(动静结合)渲染出战地的悲壮气氛和战争残酷。
解析
周诗的第三句写诗人立于洞庭荒野,仰望天空北斗横斜。“斗柄”指北斗的第五至第七星,即衡、开泰、摇光。北斗,第一至第四星象斗,第五至第七星象柄。“阑干”指横斜貌。三国 魏 曹植 《善哉行》:"月没参横,北斗阑干"。第四句写耳畔传来岳阳城凄凉的角声。综合考虑可以看出运用了动静结合的手法。
《雁门太守行》三四句为“角声满天秋色里,塞上燕脂凝夜紫”。意为号角的声音在这秋色里响彻天空;夜色中,塞上泥土中鲜血浓艳得如紫色。和周诗比较就可得知相同的手法即为动静结合。结合诗句分析作答即可。
考查方向
解题思路
回答时结合诗句点明修辞手法并具体分析,后简洁点明效果。
易错点
不结合诗句作具体分析
正确答案
(1)漂泊思归之情。 “酒添客泪”写出了诗人身在客中,不由伤感落泪,想要借酒浇愁,却依旧愁心难抑, “归心”则透露了诗人的思归之情。(2)忧国伤时之情。 “欲问行朝近消息”一句表现了诗人对朝廷的关切, “眼中盗贼尚纵横”一句则勾勒出遍地兵荒马乱的景象。
解析
根据题目和注释可知本诗是一首羁旅诗。通过“客泪” “归心”可看出思归之情;“欲问行朝近消息”一句表现了诗人对朝廷的关切,即忧国之情。“眼中盗贼尚纵横”一句则勾勒出遍地兵荒马乱的景象,即感时伤世之情。
考查方向
解题思路
结合诗句的最后两联具体分析
易错点
不结合诗句具体分析,只是空谈。
已知椭圆的对称轴为坐标轴,离心率为
,且一个焦点坐标为
24.求椭圆的方程;
25.设直线与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中点
在椭圆
上,
为坐标原点.求点
到直线
的距离的最小值.
正确答案
;
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,由方程思想求解出标准方程; 由已知设椭圆的方程为
,则
.
由,得
.∴椭圆
的方程为
.
考查方向
解题思路
本题考查圆锥曲线中求标准方程的方法和最值问题——函数思想,解题步骤如下:由方程思想求解出标准方程;
易错点
无法构建关于点到直线
的距离的函数表达式。
正确答案
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,(构建关于点到直线
的距离的函数表达式:当直线
斜率存在时,设直线
方程为
.
则由消去
得
.
.①
设点的坐标分别是
.
∵四边形为平行四边形,∴
.
.由于点
在椭圆
上,∴
.
从而,化简得
,经检验满足①式.
又点到直线
的距离为
.
当且仅当时等号成立.
当直线斜率不存在时,由对称性知,点
一定在
轴上.
从而点的坐标为
或
,直线
的方程为
,∴点
到直线
的距离为
.
∴点到直线
的距离的最小值为
.
考查方向
解题思路
本题考查圆锥曲线中求标准方程的方法和最值问题——函数思想,解题步骤如下:构建关于点到直线
的距离的函数表达式。
易错点
运算和斜率不存在的讨论。
已知中心在坐标原点,焦点在轴上的椭圆
的离心率为
,椭圆上异于长轴顶点的任意点
与左右两焦点
构成的三角形中面积的最大值为
.
23.求椭圆的标准方程;
24.若与
是椭圆
上关于
轴对称的两点,连接
与椭圆的另一交点为
,求证:直线
与
轴交于定点.
正确答案
;
解析
试题分析:本题属于圆锥曲线的综合应用问题,属于拔高题,不容易得分,解析如下:由题意知,
,解得
,
,
.椭圆
的标准方程是
.
考查方向
解题思路
利用相关知识求椭圆方程;
易错点
对题中条件的处理容易出错。
正确答案
.
解析
试题分析:本题属于圆锥曲线的综合应用问题,属于拔高题,不容易得分,解析如下:设,
,
,
:
.将
,代入
得
.则
,
.
因为共线,所以
,即
.
整理得,
所以,
.
:
,与
轴交于定点
.
考查方向
解题思路
联立方程组,利用题中所给条件找关系,整理即可求解.
易错点
对题中条件的处理容易出错。
扫码查看完整答案与解析