- 椭圆的几何性质
- 共178题
以椭圆









24.求椭圆
25.若椭圆






正确答案
见解析
解析
设椭圆







则椭圆


考查方向
解题思路
利用所给“准圆”的性质和椭圆的性质以及抛物线的性质求椭圆的方程和准圆方程,利用平面向量的数量积结合圆锥曲线相关性质计算求解。
易错点
计算能力弱
正确答案
见解析
解析
设直线



联列方程组
由




此时
则原点


得原点




考查方向
解题思路
利用所给“准圆”的性质和椭圆的性质以及抛物线的性质求椭圆的方程和准圆方程,利用平面向量的数量积结合圆锥曲线相关性质计算求解。
易错点
计算能力弱
已知A、B分别是椭圆



25.求椭圆C的方程;
26.已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.
正确答案
见解析
解析
抛物线的焦点F(1,0),∵


考查方向
解题思路
利用离心率和椭圆的性质以及抛物线的性质求椭圆的方程,利用直线与圆锥曲线方程证明三点共线。
易错点
计算能力弱
正确答案
见解析
解析
由25题知直线l的方程为x=-2,∵点P异于A,B,∴直线AP的斜率存在且不为0,设AP的方程为




又∵QF⊥AP,




即
考查方向
解题思路
利用离心率和椭圆的性质以及抛物线的性质求椭圆的方程,利用直线与圆锥曲线方程证明三点共线。
易错点
计算能力弱
已知椭圆









20.求椭圆
21.若椭圆


正确答案
解析
解:由已知得




所以


考查方向
解题思路
将“斜率之积为


易错点
解析几何易出现对于直线方程的分类讨论上的错误,再就是直线与曲线联系以后,曲线与直线有两个交点的条件易得忽略,寻求变量之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案

解析
解:假设存在曲线


当
当




与曲线

所以

由韦达定理得:
所以




将(2)式代入(1)式得:




综上所述,

考查方向
解题思路
从反面入手,假设存在曲线








易错点
解析几何易出现对于直线方程的分类讨论上的错误,再就是直线与曲线联系以后,曲线与直线有两个交点的条件易得忽略,寻求变量之间的联系时,易出现转化和计算、代数整理上的错误。
已知直线





25.若


26.若

正确答案
见解析
解析
解:设直线l与椭圆的两个交点坐标为


考查方向
解题思路
联立方程组,消去参数,利用基本不等式判断
易错点
计算错误;找不到最大值
正确答案
见解析
解析


由


当且仅当

又

所以,


考查方向
解题思路
联立方程组,消去参数,利用基本不等式判断
易错点
计算错误;找不到最大值
如图所示的封闭曲线C由曲线




24.求曲线
25.若点Q是曲线

26.若点F为曲线



正确答案
见解析
解析
考查方向
解题思路
根据离心率和点求出曲线
易错点
本题易错于1、曲线方程求错,特别是曲线
正确答案
见解析
解析
考查方向
解题思路
求出直线AB,判定面积最大是恰好是与AB平行且与曲线
易错点
本题易错于
1、曲线方程求错,特别是曲线
2、第二问Q点位置的确定,使用直接法会极大的增加运算过程,且很容易出错,第三问,主要是在圆的几何性质上使用出错
正确答案
见解析
解析
考查方向
解题思路
设出直线方程,利用与曲线

借助圆的几何性质
易错点
本题易错于1、曲线方程求错,特别是曲线
如图,曲线







23.求
24.过点






正确答案
(1)
解析
(Ⅰ)因为抛物线


由因为
考查方向
解题思路
先根据抛物线与x轴的交点求出b的值,后利用离心率求出a的值;
易错点
不知道抛物线与x轴的交点即为b的值;
正确答案
(2)
解析
(Ⅱ)因为



设直线









由
化简得



考查方向
解题思路
设出直线

易错点
不会转化
(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆



25.若
26.若
正确答案

解析
试题分析:(1)本题中已知椭圆上的一点到两焦点的距离,因此由椭圆定义可得长轴长,即参数


试题解析:(1)由椭圆的定义,
设椭圆的半焦距为c,由已知

从而

考查方向
解题思路
确定圆锥曲线方程的最基本方法就是根据已知条件得到圆锥曲线系数的方程,解方程组得到系数值.注意在椭圆中c2=a2-b2,在双曲线中c2=a2+b2.圆锥曲线基本问题的考查的另一个重点是定义的应用
易错点
椭圆定义的应用
正确答案
解析
试题解析:(2)要求椭圆的离心率,就是要找到关于




这样在



(2)解法一:如图(21)图,设点P

求得
由

由椭圆的定义,
从而由
又由


于是
解得
解法二:如图由椭圆的定义,
从而由
又由




由

考查方向
解题思路
求椭圆与双曲线的离心率的基本思想是建立关于a,b,c的方程,根据已知条件和椭圆、双曲线中a,b,c的关系,求出所求的椭圆、双曲线中a,c之间的比例关系,根据离心率定义求解.
易错点
a,c之间的比例关系的分析
如图,椭圆E:







25.求椭圆E的方程;
26.在平面直角坐标系

正确答案

解析
由已知,点
因此,
解得
所以椭圆的方程为
考查方向
解题思路
根据椭圆的对称性,当直线







易错点
不会转化题中给出的条件
正确答案
存在,Q点的坐标为
解析
当直线



如果存在定点Q满足条件,则

所以Q点在y轴上,可设Q点的坐标为
当直线


则
由



所以,若存在不同于点P的定点Q满足条件,则Q点的坐标

下面证明:对任意的直线

当直线
当直线



联立

其判别式
所以,
因此
易知,点B关于y轴对称的点的坐标为
又
所以

所以
故存在与P不同的定点

考查方向
解题思路
先利用










易错点
想不到先解决特色情况再证明一般情况。
已知椭圆E:

24.求椭圆
25.直线l与椭圆E相交于A,B两个不同的点,线段AB的中点为C,O为坐标原点,若△OAB面积为

正确答案
(Ⅰ)
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意讨论直线不存在斜率的特殊情况;
(Ⅰ)由题

所以椭圆E的方程为
考查方向
解题思路
本题考查椭圆的标准方程、直线和椭圆的位置关系,解题步骤如下:
1)利用椭圆的内接四边形和椭圆的几何元素间的关系进行求解;
2)联立直线与椭圆的方程,得到关于
3)利用判别式、根与系数的关系和弦长公式求弦长;
4)利用点到直线的距离公式和三角形的面积公式求面积表达式;
5)利用基本不等式求最值。
易错点
1)忽视椭圆顶点的对称性;
2)忽视基本不等式求最值时的取等条件.
正确答案
(Ⅱ)2.
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意讨论直线不存在斜率的特殊情况;
(Ⅱ)设A(x1,y1),B(x2,y2),
(1)当l的斜率不存在时,A,B两点关于x轴对称,
由△OAB面积

(2)当l的斜率存在时,设直线l:
联立方程组

由

则


原点O到直线l的距离
所以△OAB的面积
整理得
所以


结合(*)得

则C


所以
当且仅当
故

考查方向
解题思路
本题考查椭圆的标准方程、直线和椭圆的位置关系,解题步骤如下:
1)利用椭圆的内接四边形和椭圆的几何元素间的关系进行求解;
2)联立直线与椭圆的方程,得到关于
3)利用判别式、根与系数的关系和弦长公式求弦长;
4)利用点到直线的距离公式和三角形的面积公式求面积表达式;
5)利用基本不等式求最值。
易错点
1)忽视椭圆顶点的对称性;
2)忽视基本不等式求最值时的取等条件.
20. 如图:A,B,C是椭圆



(I)求椭圆的方程;
(II)若P是椭圆上除顶点外





正确答案
见解析
解析
考查方向
解题思路
1)点到直线的距离公式得到a,b的关系,根据点在椭圆上联立求出椭圆方程
2)设点p,根据要求求出直线AP,与直线BC求出点D
3)根据直线CP得到点E
4)使用两点间斜率公式得到DE斜率,化简得到结论
易错点
本题主要有以下几个错误:
1)椭圆方程求错
2)找不到有效突破点,导致运算量加大,无法得出理想结果
知识点
扫码查看完整答案与解析































































