- 椭圆的几何性质
- 共178题
已知点

26.设椭圆的两个焦点分别为



27.若直线









正确答案


解析
试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“


(Ⅰ)由题意可知,


因为


所以

易得椭圆的离心率
考查方向
解题思路
本题考查直线与圆锥曲线综合应用问题,解题步骤如下:
根据题意


本题第二问由“


易错点
未注意到点


正确答案
证明略.
解析
试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“


(Ⅱ)由

因为直线



所以


设





显然直线





则

因为

所以
考查方向
解题思路
本题考查直线与圆锥曲线综合应用问题,解题步骤如下:
根据题意


本题第二问由“


易错点
未注意到点


如图,在平面直角坐标系xOy中,已知椭圆


23.求椭圆的标准方程;
24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
正确答案

解析
(1)由题意可得,e=

且c+

则b=1,即有椭圆方程为
考查方向
解题思路
(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;
易错点
本题考查椭圆的方程和性质,在应用几何意义时易错.
正确答案
y=x﹣1或y=﹣x+1.
解析
(2)当AB⊥x轴,AB=
当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),
将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,
则x1+x2=

则C(




若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;
则k≠0,故PC:y+



从而|PC|=
由|PC|=2|AB|,可得

此时AB的方程为y=x﹣1或y=﹣x+1.
考查方向
解题思路
(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.
易错点
本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.
已知






23.求该椭圆的离心率;
24.设

正确答案
.e=
解析
当线段A


因为cos∠







考查方向
解题思路
先证出

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案


解析
由23得椭圆方程为
(1) 当AB、AC的斜率都存在时,设,A(


则直线AC的方程为y=






(2) 若AB⊥x轴,则



综上所述,

考查方向
解题思路
由23得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
已知






24.求该椭圆的离心率;
25.设

正确答案
.e=
解析
当线段A


因为cos∠







考查方向
解题思路
先证出

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案


解析
由24得椭圆方程为




则直线AC的方程为y=






(2) 若AB⊥x轴,则



综上所述,

考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
如图,在平面直角坐标系xOy中,已知椭圆


23.求椭圆的标准方程;
24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
正确答案

解析
(1)由题意可得,e=

且c+

则b=1,即有椭圆方程为
考查方向
解题思路
(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;
易错点
本题考查椭圆的方程和性质,在应用几何意义时易错.
正确答案
y=x﹣1或y=﹣x+1.
解析
(2)当AB⊥x轴,AB=
当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),
将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,
则x1+x2=

则C(




若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;
则k≠0,故PC:y+



从而|PC|=
由|PC|=2|AB|,可得

此时AB的方程为y=x﹣1或y=﹣x+1.
考查方向
解题思路
(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.
易错点
本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.
扫码查看完整答案与解析


















