- 函数概念与表示
- 共1891题
已知函数的值域为R,则k的取值范围是
正确答案
解析
要满足题意,t=x2-2kx+k要能取到所有正实数,抛物线要与x轴有交点,
∴△=4k2-4k≥0.解得k≥1或k≤0.故选 C。
知识点
已知函数满足
(1)求函数值域
(2)当时,函数
的最小值为7,求
的最大值
正确答案
见解析。
解析
设
(1)在(0,+)上是减函数
所以值域为(-
,1) ………………6分
(2) 由
所以在
上是减函数
或
(不合题意舍去)…………10分
当时
有最大值,
即 ………………12分
知识点
定义在上的函数
同时满足以下条件:
① 在
上是减函数,在
上是增函数;
② 是偶函数;
③ 在
处的切线与直线
垂直.
(1)求函数的解析式;
(2)设,若存在
,使
,求实数
的取值范围。
正确答案
见解析。
解析
(1) ∵
在
上是减函数,在
上是增函数,
∴ ……① ……………(1分)
由是偶函数得:
② ……………(2分)
又在
处的切线与直线
垂直,
③ ……………(3分)
由①②③得:,即
……………(4分)
(2)由已知得:若存在,使
,即存在
,使
,
设,则
……………(6分)
令=0,∵
,∴
……………(7分)
当时,
,∴
在
上为减函数
当时,
,∴
在
上为增函数
∴在
上有最大值。……………(9分)
又,∴
最小值为
……………(11分)
于是有为所求 ……………(12分)
知识点
设函数.
(1) 试问函数能否在
时取得极值?说明理由;
(2) 若a=-1,当时,函数
与
的图像有两个公共点,求c的取值范围。
正确答案
见解析。
解析
(1)由题意,
假设在时
取得极值,则有
………………4分
而此时,,函数
在R上为增函数,无极值。
这与在x=-1有极值矛盾,所以
在x=-1处无极值.……………………6分
(2)设,则有
设,令
.解得
或
.…8分
列表如下:
知识点
某公司计划投资、
两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方要成正比例,其关系如图2.(注:利润与投资量的单位:万元)
(1)分别将、
两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入、
两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
正确答案
见解析。
解析
(1)设投资万元,A产品的利润为
万元,B产品的利润为
万元,
依题意可设. (2分)
由图1,得即
. (3分)
由图2,得即
(4分)
故. (6分)
(1)设B产品投入万元,则A产品投入10-
万元,设企业利润为
万元,
由(1)得 (8分)
, (10分)
当
,即
时,
.
因此当A产品投入6万元,B产品投入4万元时,该企业获得最大利润为2.8万元。(12分)
知识点
函数的大致图象是
正确答案
解析
因为是奇函数,可排除A、B,由
得
时函数取得极值,故选D.
知识点
已知函数,
.
(1)如果函数在
上是单调函数,求
的取值范围;
(2)是否存在正实数,使得函数
在区间
内有两个不同的零点?若存在,请求出
的取值范围;若不存在,请说明理由。
正确答案
见解析。
解析
(1)当时,
在
上是单调增函数,符合题意,……1分
当时,
的对称轴方程为
,
由于在
上是单调函数,所以
,解得
或
,
综上,的取值范围是
,或
, …………………………4分
(2),
因在区间(
)内有两个不同的零点,所以
,
即方程在区间(
)内有两个不同的实根. …………5分
设
,
………7分
令,因为
为正数,解得
或
(舍)
当时,
,
是减函数;
当时,
,
是增函数. …………………………8分
为满足题意,只需在(
)内有两个不相等的零点, 故
解得 ……………………………12分
知识点
已知是实数,函数f(x)=x2(x-
)。
(1)若,求
的值及曲线
在点
处的切线方程;
(2)求在区间[0,2]上的最大值。
正确答案
见解析。
解析
(1),因为
,所以
。……2分
又当时, f(1)=1,f'(1)=3,
所以曲线处的切线方程为
。…………5分
(2)解:令,解得
, …………7分
当,即a≤0时,
在[0,2]上单调递增,从而
。
当时,即a≥3时,
在[0,2]上单调递减,从而
。
当,即
,
在
上单调递减,在
上单调递
增。
从而 …………11分
故函数的最大值为
或0. …………12分
知识点
已知,其中
是自然常数,
(1)讨论时,
的单调性、极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数,使
的最小值是3,若存在,求出
的值;若不存在,说明理由。
正确答案
见解析。
解析
(1), ……1分
∴当时,
,此时
单调递减w.w.w.zxxk.c.o.m
当时,
,此时
单调递增 …………3分
∴的极小值为
……………………4分
(2)的极小值为1,即
在
上的最小值为1,
∴ ,…………………………5分
令,
, …………6分
当时,
,
在
上单调递增 ………7分
∴
∴在(1)的条件下,……………………………9分
(3)假设存在实数,使
有最小值3,
① 当时,
, 所以
在
上单调递减,
所以,此时无最小值。 ……10分
②当时,
在
上单调递减,在
上单调递增
,
,满足条件。 ……11分
③ 当时,
,
所以在
上单调递减,
,
所以,此时无最小值。
综上,存在实数,使得当
时
有最小值3.……14分
知识点
函数
正确答案
解析
将题目简化下,原函数与|x-1|+|x-2|+|x-3|的图像性质类似可以用图像,做一条x轴,标出1,2,3的坐标函数的集合意义即x轴上的点到3个点的距离和然后分x在1点左方,1和2之间,2和3之间,3点右方来讨论不难得出上述结论。其对称轴为x=1006,在对称轴的右方单调递增,左方单调递减。
知识点
扫码查看完整答案与解析